Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

原子层沉积 材料科学 从头算 物理吸附 吸附 分子动力学 计算机科学 沉积(地质) 纳米技术 计算科学 计算化学 图层(电子) 化学 物理化学 生物 古生物学 有机化学 沉积物
作者
Hisao Nakata,Michael Filatov,Cheol Ho Choi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 26116-26127 被引量:6
标识
DOI:10.1021/acsami.2c01768
摘要

Knowledge of the detailed mechanism behind the atomic layer deposition (ALD) can greatly facilitate the optimization of the manufacturing process. Computational modeling can potentially foster the understanding; however, the presently available capabilities of the accurate ab initio computational techniques preclude their application to modeling surface processes occurring on a long time scale, such as ALD. Although the situation can be greatly improved using machine learning (ML), this technique requires an enormous amount of data for training datasets. Here, we propose an iterative protocol for optimizing ML training datasets and apply ML-assisted ab initio calculations to model surface reactions occurring during the Al(Me)3/H2O ALD process on the OH-terminated Si (111) surface. The protocol uses a recently developed low-dimensional projection technique (TDUS), greatly reducing the amount of information required to achieve high accuracy (ca. 1 kcal/mol or less) of the developed ML models. The resulting free energy landscapes reveal fine details of various aspects of the target ALD process, such as the surface proton transfer, zwitterionic surface configurations, elimination-addition/addition-elimination, and SN2 reactions as well as the role of the surface entropic and temperature effects. Simulations of adsorption dynamics predict that the maximum physisorption rate of ca. 70% is achieved at the incidence velocity urms of the reactants in the range of 15-20 Å/ps. Hence, the proposed protocol furnishes a very effective tool to study complex chemical reaction dynamics at a much reduced computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解语花发布了新的文献求助10
刚刚
醒醒发布了新的文献求助10
刚刚
浮游应助ldroc采纳,获得10
刚刚
Yang2完成签到,获得积分10
1秒前
beyond发布了新的文献求助10
1秒前
1秒前
Lucas应助Mystic采纳,获得10
2秒前
2秒前
浮游应助金博洋采纳,获得18
2秒前
2秒前
天天快乐应助哈哈王采纳,获得10
3秒前
3秒前
啦啦啦啦啦啦啦完成签到,获得积分10
3秒前
3秒前
呓语完成签到,获得积分10
4秒前
上官若男应助csy采纳,获得10
4秒前
可爱的雨柏完成签到,获得积分10
5秒前
蛙趣完成签到,获得积分10
5秒前
5秒前
果果完成签到,获得积分10
5秒前
yanwowo完成签到,获得积分10
5秒前
6秒前
星星完成签到,获得积分10
6秒前
6秒前
laojian完成签到 ,获得积分10
6秒前
李健应助深情傲柔采纳,获得10
7秒前
栓Q发布了新的文献求助10
7秒前
7秒前
CT民工发布了新的文献求助10
7秒前
mslln发布了新的文献求助10
7秒前
科研完成签到,获得积分20
8秒前
9秒前
PGZ完成签到,获得积分10
9秒前
醒醒完成签到,获得积分10
9秒前
赘婿应助ing采纳,获得10
10秒前
zhou完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
周晓发布了新的文献求助10
11秒前
beyond完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978