Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

原子层沉积 材料科学 从头算 物理吸附 吸附 分子动力学 计算机科学 沉积(地质) 纳米技术 计算科学 计算化学 图层(电子) 化学 物理化学 生物 古生物学 有机化学 沉积物
作者
Hisao Nakata,Michael Filatov,Cheol Ho Choi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 26116-26127 被引量:6
标识
DOI:10.1021/acsami.2c01768
摘要

Knowledge of the detailed mechanism behind the atomic layer deposition (ALD) can greatly facilitate the optimization of the manufacturing process. Computational modeling can potentially foster the understanding; however, the presently available capabilities of the accurate ab initio computational techniques preclude their application to modeling surface processes occurring on a long time scale, such as ALD. Although the situation can be greatly improved using machine learning (ML), this technique requires an enormous amount of data for training datasets. Here, we propose an iterative protocol for optimizing ML training datasets and apply ML-assisted ab initio calculations to model surface reactions occurring during the Al(Me)3/H2O ALD process on the OH-terminated Si (111) surface. The protocol uses a recently developed low-dimensional projection technique (TDUS), greatly reducing the amount of information required to achieve high accuracy (ca. 1 kcal/mol or less) of the developed ML models. The resulting free energy landscapes reveal fine details of various aspects of the target ALD process, such as the surface proton transfer, zwitterionic surface configurations, elimination-addition/addition-elimination, and SN2 reactions as well as the role of the surface entropic and temperature effects. Simulations of adsorption dynamics predict that the maximum physisorption rate of ca. 70% is achieved at the incidence velocity urms of the reactants in the range of 15-20 Å/ps. Hence, the proposed protocol furnishes a very effective tool to study complex chemical reaction dynamics at a much reduced computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三里墩头应助oldlee采纳,获得20
刚刚
刚刚
iNk应助西安小小朱采纳,获得10
刚刚
CodeCraft应助西安小小朱采纳,获得10
刚刚
无花果应助爱学习的小迟采纳,获得10
1秒前
哭泣的映寒完成签到 ,获得积分10
1秒前
xls完成签到,获得积分10
1秒前
1秒前
故意的傲玉应助圈圈采纳,获得10
1秒前
2秒前
522完成签到,获得积分10
2秒前
2秒前
kbj发布了新的文献求助10
2秒前
3秒前
老西瓜发布了新的文献求助10
3秒前
人各有痣完成签到,获得积分10
3秒前
后知后觉发布了新的文献求助10
3秒前
xiaoxiao发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
英姑应助哈哈呀采纳,获得10
5秒前
5秒前
hurry完成签到,获得积分10
5秒前
Hungrylunch应助陈玉婷采纳,获得20
5秒前
领导范儿应助hu970采纳,获得10
6秒前
new_vision发布了新的文献求助10
6秒前
拼搏翠桃完成签到,获得积分10
7秒前
糖糖科研顺利呀完成签到 ,获得积分10
7秒前
7秒前
阿秋完成签到,获得积分10
7秒前
Pangsj发布了新的文献求助10
8秒前
hhh发布了新的文献求助10
8秒前
好运藏在善良里完成签到,获得积分10
8秒前
情怀应助奋斗映寒采纳,获得10
8秒前
9秒前
CodeCraft应助牧海冬采纳,获得10
9秒前
zxcv23完成签到,获得积分10
9秒前
10秒前
小离发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672