Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

原子层沉积 材料科学 从头算 物理吸附 吸附 分子动力学 计算机科学 沉积(地质) 纳米技术 计算科学 计算化学 图层(电子) 化学 物理化学 生物 古生物学 有机化学 沉积物
作者
Hisao Nakata,Michael Filatov,Cheol Ho Choi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 26116-26127 被引量:6
标识
DOI:10.1021/acsami.2c01768
摘要

Knowledge of the detailed mechanism behind the atomic layer deposition (ALD) can greatly facilitate the optimization of the manufacturing process. Computational modeling can potentially foster the understanding; however, the presently available capabilities of the accurate ab initio computational techniques preclude their application to modeling surface processes occurring on a long time scale, such as ALD. Although the situation can be greatly improved using machine learning (ML), this technique requires an enormous amount of data for training datasets. Here, we propose an iterative protocol for optimizing ML training datasets and apply ML-assisted ab initio calculations to model surface reactions occurring during the Al(Me)3/H2O ALD process on the OH-terminated Si (111) surface. The protocol uses a recently developed low-dimensional projection technique (TDUS), greatly reducing the amount of information required to achieve high accuracy (ca. 1 kcal/mol or less) of the developed ML models. The resulting free energy landscapes reveal fine details of various aspects of the target ALD process, such as the surface proton transfer, zwitterionic surface configurations, elimination-addition/addition-elimination, and SN2 reactions as well as the role of the surface entropic and temperature effects. Simulations of adsorption dynamics predict that the maximum physisorption rate of ca. 70% is achieved at the incidence velocity urms of the reactants in the range of 15-20 Å/ps. Hence, the proposed protocol furnishes a very effective tool to study complex chemical reaction dynamics at a much reduced computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高永康应助小罗采纳,获得10
刚刚
自由寄柔发布了新的文献求助10
刚刚
万能图书馆应助LAN采纳,获得10
刚刚
李健的小迷弟应助RC_Wang采纳,获得10
1秒前
Owen应助询鲤采纳,获得10
1秒前
yuyu发布了新的文献求助10
2秒前
2秒前
2秒前
贰陆发布了新的文献求助10
2秒前
2秒前
专注酸奶发布了新的文献求助10
2秒前
小鱼儿发布了新的文献求助10
3秒前
河畔发布了新的文献求助10
3秒前
3秒前
共享精神应助诚c采纳,获得10
4秒前
4秒前
4秒前
haha发布了新的文献求助10
5秒前
汉堡包应助文艺谷蓝采纳,获得10
5秒前
Akun发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
冬嘉完成签到,获得积分10
7秒前
小二郎应助ANNNNNN采纳,获得10
7秒前
7秒前
8秒前
传奇3应助自由寄柔采纳,获得10
8秒前
最好完成签到 ,获得积分10
8秒前
9秒前
9秒前
小青椒应助zzz采纳,获得30
9秒前
10秒前
尉迟希望应助Phoebe0730采纳,获得10
10秒前
河畔完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
李健的粉丝团团长应助TK采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454