亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated Deep Learning Dynamics for Atomic Layer Deposition of Al(Me)3 and Water on OH/Si(111)

原子层沉积 材料科学 从头算 物理吸附 吸附 分子动力学 计算机科学 沉积(地质) 纳米技术 计算科学 计算化学 图层(电子) 化学 物理化学 生物 古生物学 有机化学 沉积物
作者
Hisao Nakata,Michael Filatov,Cheol Ho Choi
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (22): 26116-26127 被引量:6
标识
DOI:10.1021/acsami.2c01768
摘要

Knowledge of the detailed mechanism behind the atomic layer deposition (ALD) can greatly facilitate the optimization of the manufacturing process. Computational modeling can potentially foster the understanding; however, the presently available capabilities of the accurate ab initio computational techniques preclude their application to modeling surface processes occurring on a long time scale, such as ALD. Although the situation can be greatly improved using machine learning (ML), this technique requires an enormous amount of data for training datasets. Here, we propose an iterative protocol for optimizing ML training datasets and apply ML-assisted ab initio calculations to model surface reactions occurring during the Al(Me)3/H2O ALD process on the OH-terminated Si (111) surface. The protocol uses a recently developed low-dimensional projection technique (TDUS), greatly reducing the amount of information required to achieve high accuracy (ca. 1 kcal/mol or less) of the developed ML models. The resulting free energy landscapes reveal fine details of various aspects of the target ALD process, such as the surface proton transfer, zwitterionic surface configurations, elimination-addition/addition-elimination, and SN2 reactions as well as the role of the surface entropic and temperature effects. Simulations of adsorption dynamics predict that the maximum physisorption rate of ca. 70% is achieved at the incidence velocity urms of the reactants in the range of 15-20 Å/ps. Hence, the proposed protocol furnishes a very effective tool to study complex chemical reaction dynamics at a much reduced computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助ff采纳,获得10
1秒前
小邸应助科研通管家采纳,获得10
4秒前
小邸应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
小邸应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
xftx发布了新的文献求助30
6秒前
7秒前
认真的白易完成签到,获得积分10
9秒前
9秒前
Jasper应助zwl采纳,获得10
12秒前
13秒前
19秒前
19秒前
科研通AI6应助曹能豪采纳,获得10
24秒前
丘比特应助优秀的张四月采纳,获得10
29秒前
JamesPei应助汤人雄采纳,获得10
30秒前
李健应助CC采纳,获得10
38秒前
李健的小迷弟应助十月采纳,获得10
39秒前
47秒前
Hello应助汤人雄采纳,获得10
50秒前
50秒前
51秒前
WeiMooo完成签到 ,获得积分10
54秒前
优秀的张四月完成签到,获得积分10
54秒前
56秒前
十月发布了新的文献求助10
57秒前
57秒前
自信昊强发布了新的文献求助10
1分钟前
1分钟前
曹能豪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
自信昊强完成签到,获得积分10
1分钟前
我爱猪猪完成签到,获得积分10
1分钟前
和谐雨竹发布了新的文献求助10
1分钟前
ez2完成签到,获得积分10
1分钟前
乐观怀亦发布了新的文献求助10
1分钟前
李健的小迷弟应助ez2采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497