亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches

机器学习 人工智能 计算机科学 小鱼 深度学习 生物信息学 适用范围 生物 数量结构-活动关系 渔业 生物化学 基因
作者
Minjie Xu,Hongbin Yang,Guixia Liu,Yun Tang,Weihua Li
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:42 (11): 1766-1776 被引量:7
标识
DOI:10.1002/jat.4354
摘要

Fish is one of the model animals used to evaluate the adverse effects of a chemical exposed to the ecosystem. However, its low throughput and relevantly high expense make it impossible to test all new chemicals in manufacture. Hence, using in silico models to prioritize compounds to be tested has been widely applied in environmental risk assessment and drug discovery. In this study, we constructed the local predictive models for four fish species, including bluegill sunfish, rainbow trout, fathead minnow, and sheepshead minnow, and the global models with all four fish data. A total of 1874 unique compounds with their labels, that is, toxic (LC50 < 10 ppm) or nontoxic, were collected from ECOTOX and literature. Both conventional machine learning methods and the deep learning architecture, graph convolutional network (GCN), were used to build predictive models. The classification accuracy of the best local model for each fish species was higher than 0.83. For the global models, two strategies including consistency prediction and probability threshold were adopted to improve the predictive capability at the cost of limiting applicability domain. For 63% of compounds in domain, the accuracy was around 0.97. By comparison of the deep learning and machine learning methods, we found that the single-task GCN showed specific advantages in performance, and multitask GCN showed no advantages over the conventional machine learning methods. The data and models are available on GitHub (https://github.com/ChemPredict/ChemicalAquaticToxicity).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
javeeen完成签到 ,获得积分10
1秒前
hydwyh发布了新的文献求助10
3秒前
3秒前
6秒前
6秒前
8秒前
10秒前
hydwyh完成签到,获得积分10
10秒前
17秒前
细心天德完成签到 ,获得积分10
18秒前
思源应助Bowen Chu采纳,获得10
21秒前
23秒前
27秒前
30秒前
31秒前
Bowen Chu发布了新的文献求助10
34秒前
Geist完成签到 ,获得积分10
35秒前
Smith.w应助PAIDAXXXX采纳,获得10
39秒前
阔达的蜜粉完成签到,获得积分10
40秒前
火华完成签到 ,获得积分10
40秒前
41秒前
50秒前
guhuihaozi发布了新的文献求助10
51秒前
55秒前
科研通AI2S应助WuYiHHH采纳,获得10
57秒前
1分钟前
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
1分钟前
wanci应助yyds采纳,获得10
1分钟前
1分钟前
1分钟前
肥陈完成签到,获得积分10
1分钟前
喜悦的凉面完成签到,获得积分20
1分钟前
Smith.w应助yyds采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198399
捐赠科研通 2544631
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621749