已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid optimization algorithm for structural balance model based on influence between nodes and community quality

计算机科学 质量(理念) 平衡(能力) 算法 优化算法 数学优化 数学 医学 物理医学与康复 认识论 哲学
作者
Mingzhou Yang,Xingwei Wang,Lianbo Ma,Qiang He,Kexin Li,Min Huang
标识
DOI:10.1016/j.swevo.2022.101042
摘要

• A novel multi-objective model for structural balance problem is proposed. • Community quality and influence between nodes are considered in the novel model. • The proposed EDLS operator is integrated into NSGA-II to optimize the novel model. • A novel evaluation method instead of computing real objective function is proposed. The aim of structural balance problem is to balance an unbalanced signed social network with the minimum cost of changing edges in the network. However, the existing structural balance models usually neglect the influence between nodes, and simultaneously, fail to achieve a desirable trade-off between the structural balance cost and the community quality, which does not fit the nature of the practical network scenarios and then affects the performance of balancing the complex network structure. For this issue, this paper first proposes an improved structural balance model, which jointly takes the influence between nodes and the community quality into account. Then, in order to solve the above model, this paper designs an enhanced multi-objective optimizer based on the non-dominated sorting genetic algorithm framework, which utilizes the estimation of distribution model and a local search strategy to improve the search ability in the discrete search space. Especially, the proposed optimizer has a better ability of exploring the complex solution space and exploiting the local optimal region with a fast convergence rate. However, the use of the estimation of distribution operation and the local search operation may lead to expensive computational cost. Then, to alleviate the computational complexity, this paper introduces a novel evaluation method, which only calculates the total weights of positive edges and negative edges that need to be changed to balance the network, instead of computing the real objective function in the local search operation. Experiments on the different networks confirm the effectiveness and efficiency of the proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到 ,获得积分10
刚刚
4秒前
乐乐应助THEFAN采纳,获得10
4秒前
几两完成签到 ,获得积分10
5秒前
倪妮完成签到 ,获得积分10
5秒前
haprier完成签到 ,获得积分10
6秒前
无花果应助琪琪采纳,获得10
7秒前
baqiuzunzhe完成签到,获得积分10
8秒前
111完成签到 ,获得积分10
8秒前
呆萌滑板完成签到 ,获得积分10
9秒前
淡然冬灵完成签到,获得积分10
9秒前
JamesPei应助THEFAN采纳,获得10
9秒前
桐桐应助Yiyin采纳,获得10
9秒前
Chris完成签到 ,获得积分0
10秒前
SciGPT应助微课采纳,获得10
11秒前
斯文的苡完成签到,获得积分10
11秒前
头号玩家完成签到,获得积分10
11秒前
半夏黄良发布了新的文献求助10
12秒前
钟D摆完成签到 ,获得积分10
12秒前
Sherry完成签到 ,获得积分10
12秒前
serendipity完成签到 ,获得积分10
13秒前
13秒前
Ava应助THEFAN采纳,获得10
13秒前
houyoufang完成签到,获得积分10
15秒前
酒剑仙完成签到,获得积分10
15秒前
不想上班了完成签到 ,获得积分10
17秒前
领导范儿应助THEFAN采纳,获得10
17秒前
Lc20020320完成签到,获得积分10
17秒前
17秒前
小枣完成签到 ,获得积分10
19秒前
安静的棉花糖完成签到 ,获得积分10
19秒前
NexusExplorer应助THEFAN采纳,获得10
20秒前
九黎完成签到 ,获得积分10
21秒前
Tumumu完成签到,获得积分0
22秒前
yinjs158完成签到,获得积分10
23秒前
echo发布了新的文献求助10
23秒前
24秒前
柚子想吃橘子完成签到,获得积分10
24秒前
Lc20020320发布了新的文献求助150
25秒前
lemonyu完成签到 ,获得积分10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399