A hybrid optimization algorithm for structural balance model based on influence between nodes and community quality

计算机科学 质量(理念) 平衡(能力) 算法 优化算法 数学优化 数学 医学 物理医学与康复 认识论 哲学
作者
Mingzhou Yang,Xingwei Wang,Lianbo Ma,Qiang He,Kexin Li,Min Huang
标识
DOI:10.1016/j.swevo.2022.101042
摘要

• A novel multi-objective model for structural balance problem is proposed. • Community quality and influence between nodes are considered in the novel model. • The proposed EDLS operator is integrated into NSGA-II to optimize the novel model. • A novel evaluation method instead of computing real objective function is proposed. The aim of structural balance problem is to balance an unbalanced signed social network with the minimum cost of changing edges in the network. However, the existing structural balance models usually neglect the influence between nodes, and simultaneously, fail to achieve a desirable trade-off between the structural balance cost and the community quality, which does not fit the nature of the practical network scenarios and then affects the performance of balancing the complex network structure. For this issue, this paper first proposes an improved structural balance model, which jointly takes the influence between nodes and the community quality into account. Then, in order to solve the above model, this paper designs an enhanced multi-objective optimizer based on the non-dominated sorting genetic algorithm framework, which utilizes the estimation of distribution model and a local search strategy to improve the search ability in the discrete search space. Especially, the proposed optimizer has a better ability of exploring the complex solution space and exploiting the local optimal region with a fast convergence rate. However, the use of the estimation of distribution operation and the local search operation may lead to expensive computational cost. Then, to alleviate the computational complexity, this paper introduces a novel evaluation method, which only calculates the total weights of positive edges and negative edges that need to be changed to balance the network, instead of computing the real objective function in the local search operation. Experiments on the different networks confirm the effectiveness and efficiency of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herpes完成签到 ,获得积分0
刚刚
asd发布了新的文献求助10
3秒前
经纲完成签到 ,获得积分0
6秒前
地学韦丰吉司长完成签到,获得积分10
7秒前
丘比特应助asd采纳,获得10
8秒前
蔚蓝绽放完成签到,获得积分10
9秒前
11秒前
称心如意完成签到 ,获得积分10
12秒前
海儿的小宝贝完成签到,获得积分10
12秒前
13秒前
sjx1116完成签到 ,获得积分10
15秒前
:!完成签到,获得积分10
17秒前
sole发布了新的文献求助10
17秒前
20秒前
aili发布了新的文献求助10
20秒前
Star完成签到 ,获得积分10
24秒前
李健完成签到 ,获得积分10
25秒前
大脸猫完成签到 ,获得积分10
25秒前
堀江真夏完成签到 ,获得积分10
25秒前
Martin完成签到,获得积分10
26秒前
26秒前
巧克力完成签到 ,获得积分10
28秒前
Julien发布了新的文献求助10
29秒前
只爱医学不爱你完成签到 ,获得积分10
30秒前
爆米花应助cheria采纳,获得10
31秒前
简单的呆呆完成签到 ,获得积分10
31秒前
中恐完成签到,获得积分10
37秒前
王煊完成签到,获得积分10
38秒前
无限猕猴桃应助aili采纳,获得10
41秒前
mmmmmmgm完成签到 ,获得积分10
41秒前
小绵羊完成签到,获得积分20
46秒前
霓娜酱完成签到 ,获得积分10
49秒前
沧海云完成签到 ,获得积分10
53秒前
1分钟前
依旧完成签到,获得积分10
1分钟前
1分钟前
简单的银耳汤完成签到,获得积分10
1分钟前
宋歌发布了新的文献求助10
1分钟前
1分钟前
小李完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317049
求助须知:如何正确求助?哪些是违规求助? 2948764
关于积分的说明 8542206
捐赠科研通 2624728
什么是DOI,文献DOI怎么找? 1436407
科研通“疑难数据库(出版商)”最低求助积分说明 665893
邀请新用户注册赠送积分活动 651821