亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid optimization algorithm for structural balance model based on influence between nodes and community quality

计算机科学 质量(理念) 平衡(能力) 算法 优化算法 数学优化 哲学 数学 认识论 医学 物理医学与康复
作者
Mingzhou Yang,Xingwei Wang,Lianbo Ma,Qiang He,Kexin Li,Min Huang
标识
DOI:10.1016/j.swevo.2022.101042
摘要

• A novel multi-objective model for structural balance problem is proposed. • Community quality and influence between nodes are considered in the novel model. • The proposed EDLS operator is integrated into NSGA-II to optimize the novel model. • A novel evaluation method instead of computing real objective function is proposed. The aim of structural balance problem is to balance an unbalanced signed social network with the minimum cost of changing edges in the network. However, the existing structural balance models usually neglect the influence between nodes, and simultaneously, fail to achieve a desirable trade-off between the structural balance cost and the community quality, which does not fit the nature of the practical network scenarios and then affects the performance of balancing the complex network structure. For this issue, this paper first proposes an improved structural balance model, which jointly takes the influence between nodes and the community quality into account. Then, in order to solve the above model, this paper designs an enhanced multi-objective optimizer based on the non-dominated sorting genetic algorithm framework, which utilizes the estimation of distribution model and a local search strategy to improve the search ability in the discrete search space. Especially, the proposed optimizer has a better ability of exploring the complex solution space and exploiting the local optimal region with a fast convergence rate. However, the use of the estimation of distribution operation and the local search operation may lead to expensive computational cost. Then, to alleviate the computational complexity, this paper introduces a novel evaluation method, which only calculates the total weights of positive edges and negative edges that need to be changed to balance the network, instead of computing the real objective function in the local search operation. Experiments on the different networks confirm the effectiveness and efficiency of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhao完成签到 ,获得积分10
刚刚
科研通AI2S应助ahhhhhh采纳,获得10
6秒前
AcetylCoA完成签到 ,获得积分10
11秒前
执剑燃此生完成签到,获得积分10
18秒前
小王完成签到,获得积分10
21秒前
huff完成签到,获得积分10
26秒前
传奇3应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得30
27秒前
yoona完成签到 ,获得积分10
27秒前
DrN完成签到 ,获得积分10
27秒前
39秒前
51秒前
VIVIAN完成签到,获得积分10
51秒前
Aime完成签到 ,获得积分10
55秒前
VIVIAN发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丘比特应助执着的爆米花采纳,获得10
1分钟前
1分钟前
心空发布了新的文献求助10
1分钟前
WW完成签到 ,获得积分10
1分钟前
欧阳小枫完成签到 ,获得积分10
1分钟前
科研通AI5应助北辰一刀流采纳,获得10
1分钟前
哔噗哔噗完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
vincen91发布了新的文献求助10
1分钟前
周鑫发布了新的文献求助10
1分钟前
白桃发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田様应助白桃采纳,获得10
1分钟前
刘刘完成签到 ,获得积分10
2分钟前
机灵的忆梅完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
木木发布了新的文献求助10
2分钟前
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736611
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020021
捐赠科研通 2997226
什么是DOI,文献DOI怎么找? 1644486
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648