A hybrid optimization algorithm for structural balance model based on influence between nodes and community quality

计算机科学 质量(理念) 平衡(能力) 算法 优化算法 数学优化 数学 医学 物理医学与康复 认识论 哲学
作者
Mingzhou Yang,Xingwei Wang,Lianbo Ma,Qiang He,Kexin Li,Min Huang
标识
DOI:10.1016/j.swevo.2022.101042
摘要

• A novel multi-objective model for structural balance problem is proposed. • Community quality and influence between nodes are considered in the novel model. • The proposed EDLS operator is integrated into NSGA-II to optimize the novel model. • A novel evaluation method instead of computing real objective function is proposed. The aim of structural balance problem is to balance an unbalanced signed social network with the minimum cost of changing edges in the network. However, the existing structural balance models usually neglect the influence between nodes, and simultaneously, fail to achieve a desirable trade-off between the structural balance cost and the community quality, which does not fit the nature of the practical network scenarios and then affects the performance of balancing the complex network structure. For this issue, this paper first proposes an improved structural balance model, which jointly takes the influence between nodes and the community quality into account. Then, in order to solve the above model, this paper designs an enhanced multi-objective optimizer based on the non-dominated sorting genetic algorithm framework, which utilizes the estimation of distribution model and a local search strategy to improve the search ability in the discrete search space. Especially, the proposed optimizer has a better ability of exploring the complex solution space and exploiting the local optimal region with a fast convergence rate. However, the use of the estimation of distribution operation and the local search operation may lead to expensive computational cost. Then, to alleviate the computational complexity, this paper introduces a novel evaluation method, which only calculates the total weights of positive edges and negative edges that need to be changed to balance the network, instead of computing the real objective function in the local search operation. Experiments on the different networks confirm the effectiveness and efficiency of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏熠完成签到,获得积分10
刚刚
852应助星河采纳,获得10
2秒前
keep完成签到,获得积分10
2秒前
石武完成签到,获得积分10
2秒前
小杨发布了新的文献求助10
3秒前
Donger完成签到 ,获得积分10
3秒前
冷静烧鹅发布了新的文献求助10
3秒前
uon完成签到,获得积分10
3秒前
4秒前
科研通AI5应助wenlei采纳,获得10
4秒前
超级的诗兰完成签到,获得积分10
5秒前
6秒前
科研通AI5应助爱吃巧乐兹采纳,获得10
6秒前
7秒前
852应助双门洞采纳,获得10
7秒前
玩命的书琴完成签到,获得积分10
7秒前
黑大帅完成签到,获得积分10
8秒前
8秒前
9秒前
吴巷玉完成签到,获得积分10
9秒前
Nic发布了新的文献求助10
10秒前
香蕉觅云应助酷酷码采纳,获得10
11秒前
11秒前
樱桃完成签到 ,获得积分10
12秒前
zc98完成签到,获得积分10
13秒前
李沐唅发布了新的文献求助10
13秒前
hahahaweiwei完成签到,获得积分10
13秒前
友好似狮完成签到,获得积分20
13秒前
15秒前
15秒前
kkk完成签到 ,获得积分10
15秒前
lixy发布了新的文献求助10
16秒前
灵剑山完成签到 ,获得积分10
16秒前
17秒前
柏林寒冬应助独特的凝云采纳,获得10
17秒前
18秒前
Ayo发布了新的文献求助10
18秒前
18秒前
不鸡丢发布了新的文献求助10
20秒前
kuankuan发布了新的文献求助10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189