MMGET: a Markov model for generalized evidence theory

正确性 合并(版本控制) 计算机科学 度量(数据仓库) 马尔可夫过程 马尔可夫链 理性 信息论 马尔可夫性质 登普斯特-沙弗理论 可靠性(半导体) 马尔可夫模型 数学 理论计算机科学 人工智能 数据挖掘 算法 机器学习 统计 情报检索 认识论 功率(物理) 哲学 物理 量子力学
作者
Yuanpeng He,Yong Deng
出处
期刊:Computational & Applied Mathematics [Springer Nature]
卷期号:41 (1) 被引量:5
标识
DOI:10.1007/s40314-021-01697-y
摘要

In real life, lots of information merge from time to time. To appropriately describe actual situations in open world, a generalized evidence theory based on Dempster–Shafer evidence theory is designed. However, everything occurs in sequence and owns some underlying relationships with each other which are missing in this theory. To further embody the details of information and better conform to situations of real world, a Markov model is introduced into the generalized evidence theory which helps extract complete information volume from evidence provided. More specially, the Markov model investigates influences on properties of information given which are brought by dynamic process of transitions among different incidents and provides new solutions in evidence combination, distance measure, reliability measure, and certainty measure. Besides, some numerical examples are offered to verify the correctness and rationality of the proposed method in these relevant aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WxChen发布了新的文献求助10
1秒前
1秒前
酷炫的香魔完成签到,获得积分10
1秒前
1秒前
1秒前
NexusExplorer应助无奈满天采纳,获得10
1秒前
qwt_hello完成签到,获得积分10
1秒前
1秒前
海涛完成签到,获得积分10
2秒前
星星发布了新的文献求助10
3秒前
qq完成签到,获得积分10
3秒前
3秒前
3秒前
中央戏精学院完成签到,获得积分10
3秒前
寒冷依秋完成签到,获得积分10
3秒前
彭于晏应助jogrgr采纳,获得10
3秒前
思源应助momo采纳,获得10
4秒前
guozi应助yi采纳,获得10
4秒前
科研通AI2S应助鲤鱼凛采纳,获得10
4秒前
4秒前
kumarr发布了新的文献求助10
4秒前
4秒前
时尚语梦发布了新的文献求助10
4秒前
苹果酸奶完成签到,获得积分10
5秒前
标致小伙发布了新的文献求助10
6秒前
6秒前
6秒前
科研民工发布了新的文献求助10
6秒前
Owen应助sun采纳,获得10
6秒前
handsomecat发布了新的文献求助10
6秒前
乐乐关注了科研通微信公众号
6秒前
6秒前
Kriemhild完成签到,获得积分10
7秒前
dz完成签到,获得积分10
7秒前
小可发布了新的文献求助10
7秒前
夜雨声烦完成签到,获得积分10
7秒前
MrCoolWu发布了新的文献求助10
7秒前
过时的不评完成签到,获得积分10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759