A simple and precise calibration method for binocular vision

重射误差 校准 最大值和最小值 计算机科学 人工智能 计算机视觉 失真(音乐) 过程(计算) 机器视觉 功能(生物学) 集合(抽象数据类型) 算法 数学 图像(数学) 放大器 程序设计语言 带宽(计算) 数学分析 操作系统 统计 生物 进化生物学 计算机网络
作者
Zimiao Zhang,Xu Kai,Wu Yanan,Shihai Zhang,Qi Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (6): 065016-065016 被引量:23
标识
DOI:10.1088/1361-6501/ac4ce5
摘要

Abstract Binocular vision is an important part of machine vision measurement. Calibration accuracy is crucial for binocular vision. As for the determination of the structure parameters of the two cameras, the existing approaches usually obtain the initial values and optimize them according to the image-space errors, object-space errors or a combination of these. In the optimization process, constructing the objective function only through the image-space errors or object-space errors is not enough. Moreover, the image-space and object-space errors can form a variety of combinations to construct the objective function. Therefore, it is hard to choose the error criterion. An inadequate error criterion may lead to over-optimized or local minima (ambiguity solution). To solve this problem, this paper proposes a simple and precise calibration method for binocular vision based on the points distance constraints and image-space errors. The process of determining the structure parameters was divided into noniterative and iterative parts. We calculated the structure parameters of the two cameras according to the distance constraints of every two feature points noniteratively. The results obtained in this step were set as the initial value and refined through minimizing the reprojection errors using the Levenberg–Marquardt method. Because the results obtained in the noniterative step are accurate enough, only one iteration is needed. In this way, we finish the calibration avoiding the need to choose the error criterion. Furthermore, our method reduces the number of iterations to improve the calibration efficiency on the premise of guaranteeing the calibration accuracy. The experimental results show the superiority of this calibration method compared with other calibration methods. Using the calibration results of our method, in the measurement range of −45°∼ 45°, the rotation angle measurement error was less than ±0.032°. In the measurement range of 0 ∼ 39 mm, the displacement measurement error was less than ±0.047 mm. As for the length measurement of a 300 × 225 mm target, the length measurement error was less than ±0.039 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助小k采纳,获得10
1秒前
1秒前
2秒前
Cynthia发布了新的文献求助10
2秒前
隐形曼青应助teadan采纳,获得10
2秒前
瑞水南郡完成签到,获得积分10
3秒前
溪鱼发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
直率云朵发布了新的文献求助10
4秒前
新人类完成签到,获得积分10
5秒前
fduqyy发布了新的文献求助10
5秒前
Jasper应助SS采纳,获得10
5秒前
szy991101完成签到,获得积分20
6秒前
6秒前
碧蓝青梦发布了新的文献求助10
6秒前
7秒前
7秒前
艾达乳酪块完成签到,获得积分10
7秒前
赘婿应助llzzyyour采纳,获得10
7秒前
完美世界应助飞飞飞采纳,获得20
7秒前
7秒前
小朱马发布了新的文献求助20
8秒前
pp完成签到,获得积分10
8秒前
Chen完成签到,获得积分10
8秒前
细雨微凉发布了新的文献求助30
8秒前
充电宝应助Knisy采纳,获得10
8秒前
痛苦并快乐完成签到 ,获得积分10
9秒前
小cc完成签到 ,获得积分10
9秒前
田様应助无人青衫采纳,获得10
9秒前
10秒前
apach发布了新的文献求助10
11秒前
Charlie完成签到,获得积分10
11秒前
无私航空发布了新的文献求助10
12秒前
友好的储完成签到,获得积分10
12秒前
汉堡包应助YY7采纳,获得10
12秒前
酷酷的笔记本完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105