Barrier Lyapunov function-based adaptive prescribed performance control of the PMSM used in robots with full-state and input constraints

控制理论(社会学) 反推 控制器(灌溉) 计算机科学 李雅普诺夫函数 跟踪误差 模糊逻辑 自适应控制 控制工程 非线性系统 工程类 控制(管理) 人工智能 物理 量子力学 农学 生物
作者
Yankui Song,Yu Xia,Jiaxu Wang,Junyang Li,Wang Cheng,Yanfeng Han,Ke Xiao
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (5-6): 1400-1416 被引量:19
标识
DOI:10.1177/10775463211063256
摘要

The permanent magnet synchronous motor is extensively used in robots due to its superior performances. However, robots mostly operate in unstructured and dynamically changing environments. Therefore, it is urgent and challenging to achieve high-performance control with high security and reliability. This paper investigates an accelerated adaptive fuzzy neural prescribed performance controller for the PMSM to solve chaotic oscillations, prescribed output performance constraint, full-state constraints, input constraints, uncertain time delays, and unknown external disturbances. First, for ensuring the permanent magnet synchronous motor with higher security, faster response speed, and lower tracking error simultaneously, a novel unified prescribed performance log-type barrier Lyapunov function is proposed to handle both prescribed output performance constraint and full-state constraints. Subsequently, a continuous differentiable constraint function-based model is introduced for solving input constraints nonlinearity. The Lyapunov–Krasovskii functions are utilized to compensate the uncertain time delays. Besides, a type-2 sequential fuzzy neural network is exploited to approximate unknown nonlinearities and unknown gain. For the “explosion of complexity” associated with backstepping, a tracking differentiator is integrated into this controller. Furthermore, a speed function is introduced in the backstepping technique for accelerated convergence. On the basis of above works, the accelerated adaptive backstepping controller is achieved. And the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables are restricted in the prespecified regions and the permanent magnet synchronous motor successfully escapes from chaotic oscillations. Finally, the simulation results verify the effectiveness of the proposed controller.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助小阳采纳,获得10
刚刚
Jia发布了新的文献求助10
刚刚
1秒前
1秒前
顺利鱼发布了新的文献求助10
2秒前
哈哈哈aaao发布了新的文献求助10
2秒前
4秒前
bkagyin应助中中采纳,获得20
4秒前
量子星尘发布了新的文献求助10
4秒前
LiLi完成签到,获得积分10
4秒前
虚荣的泥猴桃完成签到 ,获得积分10
6秒前
6秒前
澳澳发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
无聊的难敌完成签到 ,获得积分10
6秒前
坤123发布了新的文献求助10
6秒前
7秒前
我很懵逼完成签到,获得积分10
7秒前
Owen应助潮汐采纳,获得10
7秒前
乐乐应助William采纳,获得10
7秒前
端庄新柔完成签到,获得积分20
8秒前
在水一方应助小玲哥采纳,获得10
8秒前
小二郎应助Sandra采纳,获得10
8秒前
大模型应助流氓煎蛋采纳,获得10
9秒前
鹅鹅鹅发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
落花生发布了新的文献求助10
11秒前
刘启迪完成签到,获得积分10
11秒前
微笑的天抒完成签到,获得积分10
12秒前
12秒前
Peter11455完成签到,获得积分10
12秒前
小水发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711166
求助须知:如何正确求助?哪些是违规求助? 5202553
关于积分的说明 15263462
捐赠科研通 4863587
什么是DOI,文献DOI怎么找? 2610793
邀请新用户注册赠送积分活动 1561077
关于科研通互助平台的介绍 1518598