Barrier Lyapunov function-based adaptive prescribed performance control of the PMSM used in robots with full-state and input constraints

控制理论(社会学) 反推 控制器(灌溉) 计算机科学 李雅普诺夫函数 跟踪误差 模糊逻辑 自适应控制 控制工程 非线性系统 工程类 控制(管理) 人工智能 物理 生物 量子力学 农学
作者
Yankui Song,Yu Xia,Jiaxu Wang,Junyang Li,Wang Cheng,Yanfeng Han,Ke Xiao
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (5-6): 1400-1416 被引量:19
标识
DOI:10.1177/10775463211063256
摘要

The permanent magnet synchronous motor is extensively used in robots due to its superior performances. However, robots mostly operate in unstructured and dynamically changing environments. Therefore, it is urgent and challenging to achieve high-performance control with high security and reliability. This paper investigates an accelerated adaptive fuzzy neural prescribed performance controller for the PMSM to solve chaotic oscillations, prescribed output performance constraint, full-state constraints, input constraints, uncertain time delays, and unknown external disturbances. First, for ensuring the permanent magnet synchronous motor with higher security, faster response speed, and lower tracking error simultaneously, a novel unified prescribed performance log-type barrier Lyapunov function is proposed to handle both prescribed output performance constraint and full-state constraints. Subsequently, a continuous differentiable constraint function-based model is introduced for solving input constraints nonlinearity. The Lyapunov–Krasovskii functions are utilized to compensate the uncertain time delays. Besides, a type-2 sequential fuzzy neural network is exploited to approximate unknown nonlinearities and unknown gain. For the “explosion of complexity” associated with backstepping, a tracking differentiator is integrated into this controller. Furthermore, a speed function is introduced in the backstepping technique for accelerated convergence. On the basis of above works, the accelerated adaptive backstepping controller is achieved. And the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables are restricted in the prespecified regions and the permanent magnet synchronous motor successfully escapes from chaotic oscillations. Finally, the simulation results verify the effectiveness of the proposed controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
维克托完成签到,获得积分20
刚刚
平常的半凡完成签到,获得积分10
刚刚
甜美的忻完成签到,获得积分10
刚刚
YangSY发布了新的文献求助10
刚刚
周萌发布了新的文献求助10
1秒前
1秒前
ding应助walter采纳,获得10
1秒前
英姑应助沉静尔白采纳,获得10
1秒前
饶天源发布了新的文献求助10
2秒前
SciGPT应助AgAin采纳,获得150
2秒前
2秒前
3秒前
小徐完成签到 ,获得积分10
3秒前
有害学术辣鸡完成签到 ,获得积分10
6秒前
LDDLleor完成签到,获得积分10
6秒前
Hello应助维克托采纳,获得10
6秒前
77发布了新的文献求助10
6秒前
Tamarin完成签到,获得积分10
8秒前
Chris完成签到,获得积分10
8秒前
木南完成签到 ,获得积分10
8秒前
8秒前
10秒前
Shiku完成签到,获得积分10
10秒前
czz014完成签到,获得积分10
10秒前
文献完成签到,获得积分20
10秒前
great7701完成签到,获得积分10
10秒前
11秒前
AgAin完成签到,获得积分10
11秒前
安嫔完成签到 ,获得积分10
12秒前
Su发布了新的文献求助10
12秒前
bbb完成签到,获得积分10
13秒前
123完成签到 ,获得积分10
14秒前
文献发布了新的文献求助10
14秒前
AgAin发布了新的文献求助150
14秒前
qkl-zyl完成签到,获得积分10
15秒前
孙雪冰发布了新的文献求助50
15秒前
周萌完成签到 ,获得积分10
15秒前
李升洋完成签到 ,获得积分10
15秒前
Blank完成签到 ,获得积分10
16秒前
大美发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294982
求助须知:如何正确求助?哪些是违规求助? 4444600
关于积分的说明 13834079
捐赠科研通 4328823
什么是DOI,文献DOI怎么找? 2376362
邀请新用户注册赠送积分活动 1371709
关于科研通互助平台的介绍 1336903