Barrier Lyapunov function-based adaptive prescribed performance control of the PMSM used in robots with full-state and input constraints

控制理论(社会学) 反推 控制器(灌溉) 计算机科学 李雅普诺夫函数 跟踪误差 模糊逻辑 自适应控制 控制工程 非线性系统 工程类 控制(管理) 人工智能 物理 生物 量子力学 农学
作者
Yankui Song,Yu Xia,Jiaxu Wang,Junyang Li,Wang Cheng,Yanfeng Han,Ke Xiao
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (5-6): 1400-1416 被引量:19
标识
DOI:10.1177/10775463211063256
摘要

The permanent magnet synchronous motor is extensively used in robots due to its superior performances. However, robots mostly operate in unstructured and dynamically changing environments. Therefore, it is urgent and challenging to achieve high-performance control with high security and reliability. This paper investigates an accelerated adaptive fuzzy neural prescribed performance controller for the PMSM to solve chaotic oscillations, prescribed output performance constraint, full-state constraints, input constraints, uncertain time delays, and unknown external disturbances. First, for ensuring the permanent magnet synchronous motor with higher security, faster response speed, and lower tracking error simultaneously, a novel unified prescribed performance log-type barrier Lyapunov function is proposed to handle both prescribed output performance constraint and full-state constraints. Subsequently, a continuous differentiable constraint function-based model is introduced for solving input constraints nonlinearity. The Lyapunov–Krasovskii functions are utilized to compensate the uncertain time delays. Besides, a type-2 sequential fuzzy neural network is exploited to approximate unknown nonlinearities and unknown gain. For the “explosion of complexity” associated with backstepping, a tracking differentiator is integrated into this controller. Furthermore, a speed function is introduced in the backstepping technique for accelerated convergence. On the basis of above works, the accelerated adaptive backstepping controller is achieved. And the presented controller can ensure that all the closed-loop signals are ultimate boundedness, and all state variables are restricted in the prespecified regions and the permanent magnet synchronous motor successfully escapes from chaotic oscillations. Finally, the simulation results verify the effectiveness of the proposed controller.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddyrrrrr完成签到 ,获得积分10
刚刚
aabsd完成签到,获得积分10
刚刚
fan完成签到,获得积分10
刚刚
1秒前
炙热晓露完成签到,获得积分10
1秒前
2秒前
123完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
搜集达人应助伏桉采纳,获得10
4秒前
晓晓发布了新的文献求助10
4秒前
4秒前
CipherSage应助小小翼采纳,获得10
5秒前
6秒前
Hikx完成签到 ,获得积分10
6秒前
zyq发布了新的文献求助10
7秒前
小火苗完成签到,获得积分10
7秒前
Mmc完成签到,获得积分10
8秒前
8秒前
8秒前
根根发布了新的文献求助10
9秒前
共享精神应助doctor采纳,获得10
9秒前
晓晓完成签到,获得积分10
10秒前
洋洋发布了新的文献求助10
10秒前
11秒前
小火苗发布了新的文献求助10
11秒前
12秒前
菜菜子发布了新的文献求助10
12秒前
12秒前
汉堡包应助子勋采纳,获得10
13秒前
BrandNew。发布了新的文献求助10
14秒前
Tree_发布了新的文献求助10
14秒前
春风明月发布了新的文献求助10
14秒前
vane完成签到,获得积分10
15秒前
Paper多多发布了新的文献求助10
16秒前
研六六发布了新的文献求助10
17秒前
BrandNew。完成签到,获得积分10
18秒前
19秒前
认真的灵竹完成签到 ,获得积分10
19秒前
SciGPT应助洋洋采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599366
求助须知:如何正确求助?哪些是违规求助? 4684972
关于积分的说明 14837354
捐赠科研通 4667915
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783