Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:74
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Genius发布了新的文献求助10
1秒前
好吃完成签到,获得积分20
1秒前
kitty发布了新的文献求助10
2秒前
吡嗪发布了新的文献求助10
2秒前
科研通AI2S应助hkh采纳,获得10
3秒前
yuli应助hkh采纳,获得10
3秒前
浮游应助hkh采纳,获得10
3秒前
浮游应助hkh采纳,获得10
3秒前
Zx_1993应助hkh采纳,获得10
3秒前
浮游应助hkh采纳,获得10
3秒前
科研通AI2S应助hkh采纳,获得10
3秒前
浮游应助hkh采纳,获得10
3秒前
浮游应助hkh采纳,获得10
3秒前
手抓饼啊发布了新的文献求助10
3秒前
浮游应助hkh采纳,获得10
3秒前
4秒前
隐形曼青应助木木采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
123木头人发布了新的文献求助10
7秒前
神勇若雁发布了新的文献求助10
7秒前
斧王发布了新的文献求助10
8秒前
浮游应助kitty采纳,获得10
10秒前
刻苦的糖豆完成签到,获得积分10
12秒前
hey完成签到,获得积分10
14秒前
锅里有两条鱼完成签到 ,获得积分10
14秒前
14秒前
16秒前
18秒前
吡嗪完成签到,获得积分10
19秒前
大脸猫完成签到 ,获得积分10
19秒前
天天快乐应助诸葛一笑采纳,获得10
20秒前
21秒前
sscihard完成签到,获得积分10
22秒前
沉迷科研无法自拔完成签到,获得积分10
22秒前
22秒前
高贵路灯完成签到,获得积分10
25秒前
缥缈的寒梦完成签到,获得积分10
26秒前
123木头人完成签到,获得积分20
27秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419734
求助须知:如何正确求助?哪些是违规求助? 4535018
关于积分的说明 14147731
捐赠科研通 4451737
什么是DOI,文献DOI怎么找? 2441853
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410663