Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:34
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff完成签到,获得积分10
2秒前
温柔若颜发布了新的文献求助10
6秒前
7秒前
7秒前
细胞核发布了新的文献求助10
7秒前
8秒前
shallgun发布了新的文献求助10
9秒前
10秒前
12秒前
14秒前
细胞核完成签到,获得积分20
16秒前
Mhj13810发布了新的文献求助10
20秒前
汉堡包应助吉吉米米采纳,获得10
20秒前
研友_xnEOX8完成签到,获得积分10
21秒前
22秒前
不安毛豆发布了新的文献求助10
26秒前
桐桐应助渤大彭于晏采纳,获得10
26秒前
cx330完成签到 ,获得积分10
28秒前
温以凡完成签到,获得积分10
28秒前
28秒前
小二郎应助xiaohu采纳,获得10
29秒前
如你所liao完成签到,获得积分10
29秒前
CipherSage应助科研辣鸡辣辣采纳,获得10
29秒前
逢考必过完成签到 ,获得积分10
32秒前
33秒前
33秒前
研友_xnEOX8发布了新的文献求助50
33秒前
34秒前
天涯眷客完成签到,获得积分10
35秒前
36秒前
科研dog完成签到,获得积分10
37秒前
37秒前
昆1231231231发布了新的文献求助10
39秒前
40秒前
1235656646完成签到,获得积分10
40秒前
40秒前
40秒前
可爱的函函应助bingbing采纳,获得10
40秒前
打打应助zzd12318采纳,获得10
42秒前
田様应助sdkabdrxt采纳,获得10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706