Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:56
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助薛定谔采纳,获得10
1秒前
1秒前
深情安青应助frank采纳,获得10
1秒前
科研通AI2S应助重要的天空采纳,获得10
1秒前
Yuhong完成签到,获得积分10
2秒前
精明寻梅完成签到,获得积分10
3秒前
科研dog完成签到,获得积分10
3秒前
hhhh发布了新的文献求助10
4秒前
shouyu29应助wangbq采纳,获得10
6秒前
silent发布了新的文献求助30
6秒前
Labubu完成签到 ,获得积分20
6秒前
Owen应助yan采纳,获得10
6秒前
KK完成签到 ,获得积分10
8秒前
9秒前
lulu完成签到,获得积分20
10秒前
又活了一天完成签到 ,获得积分10
10秒前
11秒前
11秒前
YUMI发布了新的文献求助10
12秒前
脑洞疼应助老迟到的灵煌采纳,获得10
12秒前
肖战的笑发布了新的文献求助10
13秒前
13秒前
小研完成签到 ,获得积分10
13秒前
杨冠渊完成签到,获得积分20
14秒前
14秒前
15秒前
lan发布了新的文献求助10
16秒前
科研通AI5应助阳光向秋采纳,获得10
16秒前
猪猪hero应助CYY采纳,获得10
16秒前
otaro发布了新的文献求助30
16秒前
xjn发布了新的文献求助10
17秒前
17秒前
j1kxm完成签到,获得积分10
18秒前
无言发布了新的文献求助10
18秒前
19秒前
lele200218发布了新的文献求助10
19秒前
一次过发布了新的文献求助10
20秒前
肖战的笑完成签到,获得积分10
21秒前
赐梦完成签到,获得积分10
21秒前
科研通AI5应助ling采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745787
求助须知:如何正确求助?哪些是违规求助? 3288729
关于积分的说明 10060328
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785655
科研通“疑难数据库(出版商)”最低求助积分说明 751204