Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:59
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nothing完成签到,获得积分10
刚刚
梁文琦完成签到,获得积分10
1秒前
3秒前
CHENG_2025应助小小小小采纳,获得20
3秒前
情怀应助奥利安费采纳,获得10
4秒前
Nothing发布了新的文献求助10
7秒前
7秒前
小马甲应助W14采纳,获得10
7秒前
9秒前
mc应助xiaohu采纳,获得10
10秒前
共享精神应助体贴汽车采纳,获得10
11秒前
搞怪人雄完成签到,获得积分10
12秒前
14秒前
cocofan完成签到 ,获得积分10
17秒前
17秒前
科目三应助妖九笙采纳,获得10
19秒前
20秒前
奥利安费发布了新的文献求助10
21秒前
包容归尘发布了新的文献求助10
22秒前
bkagyin应助liangchenglvliao采纳,获得30
22秒前
小研究员发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
执着怜珊完成签到 ,获得积分10
24秒前
wxy完成签到 ,获得积分10
25秒前
25秒前
W14发布了新的文献求助10
27秒前
体贴汽车发布了新的文献求助10
27秒前
董坤瑶发布了新的文献求助30
27秒前
leslie花花发布了新的文献求助10
28秒前
传奇3应助张雯思采纳,获得10
29秒前
星辰大海应助张雯思采纳,获得10
29秒前
YX完成签到,获得积分10
30秒前
zhouxuefeng发布了新的文献求助10
30秒前
31秒前
谨慎小虾米完成签到,获得积分10
36秒前
隐形曼青应助和尚哥采纳,获得10
36秒前
慕青应助pipi1412采纳,获得20
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494