亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:59
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiwei应助nnc采纳,获得50
13秒前
nnc完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助wuran采纳,获得10
35秒前
顾矜应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
NexusExplorer应助科研通管家采纳,获得10
40秒前
嘻嘻完成签到,获得积分10
1分钟前
Orange应助3927456843采纳,获得10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
2分钟前
小蘑菇应助LeezZZZ采纳,获得10
2分钟前
3927456843发布了新的文献求助10
2分钟前
2分钟前
LeezZZZ发布了新的文献求助10
2分钟前
冬去春来完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
3927456843完成签到,获得积分10
2分钟前
Lucas应助梦想家采纳,获得10
2分钟前
科研通AI6应助LeezZZZ采纳,获得10
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
3分钟前
梦想家发布了新的文献求助10
3分钟前
熊啊发布了新的文献求助10
4分钟前
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
小周完成签到 ,获得积分10
4分钟前
5分钟前
梦想家完成签到,获得积分10
5分钟前
5分钟前
story发布了新的文献求助10
5分钟前
科研通AI2S应助story采纳,获得10
6分钟前
6分钟前
鉴定为学计算学的完成签到,获得积分10
6分钟前
熊啊发布了新的文献求助10
6分钟前
Kevin完成签到,获得积分10
7分钟前
sci2025opt完成签到 ,获得积分10
7分钟前
7分钟前
李健应助鸡蛋黄采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877