已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification

概化理论 计算机科学 人工智能 图形 杠杆(统计) 自闭症 自闭症谱系障碍 模式识别(心理学) 机器学习 理论计算机科学 心理学 发展心理学
作者
Yuzhong Chen,Jiadong Yan,Mingxin Jiang,Tuo Zhang,Zhongbo Zhao,Weihua Zhao,Jian Zheng,Dezhong Yao,Rong Zhang,Keith M. Kendrick,Xi Jiang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 7275-7286 被引量:74
标识
DOI:10.1109/tnnls.2022.3154755
摘要

Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijunliang完成签到,获得积分10
1秒前
hh1106完成签到 ,获得积分20
1秒前
1秒前
minkeyantong完成签到 ,获得积分10
1秒前
1秒前
kkpzc完成签到 ,获得积分10
3秒前
粗犷的灵松完成签到,获得积分10
3秒前
无极微光应助开朗的lala采纳,获得20
3秒前
4秒前
yangjian完成签到,获得积分10
4秒前
洁净的小熊猫完成签到,获得积分10
4秒前
小方完成签到,获得积分10
5秒前
毛爱民发布了新的文献求助10
6秒前
激昂的吐司完成签到,获得积分20
8秒前
9秒前
666发布了新的文献求助10
10秒前
科研小白完成签到 ,获得积分10
15秒前
王者归来完成签到,获得积分10
15秒前
薄荷源星球完成签到 ,获得积分10
15秒前
cangmingzi完成签到,获得积分10
17秒前
酷波er应助激昂的吐司采纳,获得20
18秒前
ZHL应助Bellis采纳,获得20
19秒前
奋斗的绝悟完成签到,获得积分10
19秒前
自信书竹完成签到 ,获得积分10
19秒前
wanci应助可可钳采纳,获得10
20秒前
美丽的若云完成签到 ,获得积分10
23秒前
24秒前
24秒前
li完成签到 ,获得积分10
26秒前
一粟完成签到 ,获得积分10
26秒前
27秒前
oleskarabach发布了新的文献求助10
28秒前
29秒前
feifei完成签到,获得积分20
29秒前
Zhaoyuemeng完成签到 ,获得积分10
31秒前
李李完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
达笙完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759