Direct In Situ Vertical Growth of Interlaced Mesoporous NiO Nanosheets on Carbon Felt for Electrocatalytic Ammonia Synthesis

非阻塞I/O 材料科学 纳米片 X射线光电子能谱 化学工程 氧化镍 介孔材料 电催化剂 透射电子显微镜 氧化物 纳米复合材料 氧化石墨 纳米技术 电极 无机化学 石墨烯 电化学 催化作用 冶金 化学 生物化学 物理化学 工程类
作者
Wei Xiong,Min Zhou,Xiaoyan Huang,Weijie Yang,Da Zhang,Yaokang Lv,Hao Li
出处
期刊:Chemistry: A European Journal [Wiley]
卷期号:28 (33) 被引量:21
标识
DOI:10.1002/chem.202200779
摘要

Metal oxide nanomaterials directly grown on conductive substrates are optimal electrode materials because their structures allow for rapid ion and electron transport and thereby reduce internal resistance in the electrode. The development of such binder-free, self-supporting electrodes is of great significance for applications in electrocatalysis. In this work, a simple hydrothermal in situ self-assembly reaction and annealing process was developed to prepare three kinds of nickel oxide @ carbon felt (NiO@CF) nanocomposites with different morphologies. The influence of different precipitators (strong or weak bases) on the morphology of the resulting nano-sized nickel oxide nanocomposites was investigated. The microstructures of the NiO@CF samples were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). When ammonia was used as the precipitator, NiO grew vertically on the surface of the carbon felt and formed a mesoporous nanosheet-like structure (NiO NSs@CF). As an electrocatalytic nitrogen reduction reaction (e-NRR) electrode, the NiO NSs@CF sample showed an excellent NH3 yield (71.3 μg h-1 mg-1cat. ) and Faradaic efficiency (17.9 % at -0.5 V vs. RHE) in 0.1 M Na2 SO4 . The good performance was attributed to the vertical interleaved mesoporous sheet-like structure (with the pore size of 15 nm and the thickness of ∼30 nm) and the relatively high concentration of oxygen vacancies. First-principles calculations with strong on-site Coulomb interactions demonstrated that the presence of oxygen vacancy on NiO sample leads to a significantly stronger N binding over the surface, benefiting for the nitrogen gas adsorption and reduction. The e-NRR performance of this binder-free, flexible electrode material is superior to that of other reported nickel-based nanomaterials. This study highlights the potential of such binder-free carbon felt electrodes for use in e-NRR that could meet the needs of industrial production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
霸气的念云完成签到,获得积分10
1秒前
萝卜干完成签到,获得积分10
1秒前
清辉夜凝发布了新的文献求助20
1秒前
脑洞疼应助jjdgangan采纳,获得10
2秒前
科研通AI2S应助冀君赏采纳,获得10
3秒前
4秒前
4秒前
banksy发布了新的文献求助10
4秒前
情怀应助心灵手巧采纳,获得10
5秒前
姜姜戈戈完成签到 ,获得积分10
6秒前
NexusExplorer应助....采纳,获得10
6秒前
楠兮完成签到,获得积分10
6秒前
再慕完成签到,获得积分10
7秒前
思源应助酷盖采纳,获得10
8秒前
8秒前
Fjj完成签到,获得积分10
8秒前
8秒前
8秒前
英姑应助嘎嘣脆采纳,获得10
9秒前
Shale完成签到,获得积分10
9秒前
妮妮完成签到 ,获得积分10
9秒前
咎星完成签到,获得积分10
9秒前
10秒前
Lijia_YAO发布了新的文献求助10
10秒前
OK完成签到,获得积分10
10秒前
10秒前
友好慕卉发布了新的文献求助10
11秒前
lxl发布了新的文献求助10
11秒前
Hello应助在望采纳,获得10
11秒前
yeti完成签到,获得积分10
11秒前
Surge完成签到,获得积分10
11秒前
roselau完成签到,获得积分10
11秒前
liuting完成签到,获得积分10
12秒前
12秒前
12秒前
Owen应助tangh采纳,获得10
12秒前
朱建强完成签到,获得积分10
13秒前
奥特超曼完成签到,获得积分0
13秒前
鸣笛应助ziying126采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355