Stiffness design and multi-objective optimization of machine tool structure based on biological inspiration

参数统计 刚度 有限元法 过程(计算) 变量(数学) 参数化设计 遗传算法 参数化模型 计算机科学 工程类 结构工程 数学 机器学习 数学分析 统计 操作系统
作者
Yanpeng Hao,Lida Zhu,Boling Yan,Tianyu Ren,Jinze Zhao,Xuefeng Ning,Hao Lü
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (11-12): 2774-2788 被引量:13
标识
DOI:10.1177/10775463221085858
摘要

This paper proposes a novel method to design the internal stiffeners layout of the supporting parts of a machine tool. This method skillfully adopts the natural growth law of leaf veins. Firstly, the similarity between the growth law of leaf veins and the layout of stiffeners in the supporting parts is dealt with in detail. The mechanical properties of different growth types of leaf veins are compared and analyzed by the finite element simulation. In addition, the optimality of the adaptive growth law of leaf veins is also analyzed. Then, a parameter optimization method of stiffeners layout based on a variable cross-section structure is proposed. Distinct from the traditional design of stiffeners layout, the method proposed in this paper not only adopts the idea of a variable cross-section structure, but also simulates the adaptive growth law of leaf veins through a parametric method. In the process of establishing a meta model, three modeling methods are compared, and the excellent performance of the genetic algorithm and BP neural network (GABPNN) method in meta model accuracy is determined. And a marine predator algorithm is implemented to optimize the meta model. Finally, the method proposed in this paper is applied to the design of the column part of a machine tool, and the effectiveness of the proposed method is verified by simulation and experiments, which provides a good idea for the design of stiffeners layout of the supporting parts of a machine tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇发布了新的文献求助10
1秒前
小鱼干关注了科研通微信公众号
1秒前
李健应助腿毛的熊猫采纳,获得10
2秒前
2秒前
田様应助嘟嘟采纳,获得10
3秒前
maliwen完成签到,获得积分10
3秒前
呃呃呃完成签到 ,获得积分10
3秒前
4秒前
香蕉觅云应助Ler采纳,获得10
4秒前
ff完成签到,获得积分10
4秒前
Lucas应助滕擎采纳,获得10
6秒前
科研通AI5应助MXL采纳,获得10
6秒前
鲤鱼纸鹤发布了新的文献求助10
6秒前
香菜发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
田様应助蘑菇采纳,获得10
8秒前
kumo完成签到 ,获得积分10
9秒前
kzzzzz完成签到,获得积分10
10秒前
10秒前
10秒前
天天快乐应助jjjkkk777采纳,获得10
10秒前
刘星发布了新的文献求助10
10秒前
科研通AI5应助香菜采纳,获得10
11秒前
晓鹏发布了新的文献求助10
11秒前
月yue完成签到,获得积分10
11秒前
科研通AI5应助黒面包采纳,获得10
12秒前
12秒前
dd完成签到,获得积分10
13秒前
husi发布了新的文献求助10
13秒前
鲤鱼纸鹤完成签到,获得积分20
13秒前
噗噗完成签到,获得积分10
13秒前
14秒前
14秒前
Eve丶Paopaoxuan应助文艺月饼采纳,获得10
14秒前
顺利豆豆发布了新的文献求助30
14秒前
斯文败类应助奔波霸采纳,获得10
14秒前
Yolo完成签到 ,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113