亚基因组mRNA
寡核苷酸
小干扰RNA
生物
分子生物学
Cas9
细胞生物学
体内
清脆的
核糖核酸
化学
基因
生物化学
遗传学
作者
Cory D. Sago,Melissa P. Lokugamage,David Loughrey,Kevin E. Lindsay,Robert Hincapie,Brandon R. Krupczak,Sujay Kalathoor,Manaka Sato,Elisa Schrader Echeverri,Jordan P. Fitzgerald,Zubao Gan,Lena Gamboa,Kalina Paunovska,Carlos Sanhueza,Marine Z. C. Hatit,M. G. Finn,Philip J. Santangelo,James E. Dahlman
标识
DOI:10.1038/s41551-022-00847-9
摘要
Systemically delivered lipid nanoparticles are preferentially taken up by hepatocytes. This hinders the development of effective, non-viral means of editing genes in tissues other than the liver. Here we show that lipid-nanoparticle-mediated gene editing in the lung and spleen of adult mice can be enhanced by reducing Cas9-mediated insertions and deletions in hepatocytes via oligonucleotides disrupting the secondary structure of single-guide RNAs (sgRNAs) and also via their combination with short interfering RNA (siRNA) targeting Cas9 messenger RNA (mRNA). In SpCas9 mice with acute lung inflammation, the systemic delivery of an oligonucleotide inhibiting an sgRNA targeting the intercellular adhesion molecule 2 (ICAM-2), followed by the delivery of the sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes and increased that in lung endothelial cells. In wild-type mice, the lipid-nanoparticle-mediated delivery of an inhibitory oligonucleotide, followed by the delivery of Cas9-degrading siRNA and then by Cas9 mRNA and sgRNA, reduced the fraction of ICAM-2 indels in hepatocytes but not in splenic endothelial cells. Inhibitory oligonucleotides and siRNAs could be used to modulate the cell-type specificity of Cas9 therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI