MGF6mARice: prediction of DNA N6-methyladenine sites in rice by exploiting molecular graph feature and residual block

计算机科学 图形 残余物 特征(语言学) 人工智能 块(置换群论) DNA 分子图 模式识别(心理学) 计算生物学 生物系统 算法 化学 理论计算机科学 数学 生物 生物化学 组合数学 哲学 语言学
作者
Mengya Liu,Zhan-Li Sun,Zhigang Zeng,Kin-Man Lam
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:9
标识
DOI:10.1093/bib/bbac082
摘要

DNA N6-methyladenine (6mA) is produced by the N6 position of the adenine being methylated, which occurs at the molecular level, and is involved in numerous vital biological processes in the rice genome. Given the shortcomings of biological experiments, researchers have developed many computational methods to predict 6mA sites and achieved good performance. However, the existing methods do not consider the occurrence mechanism of 6mA to extract features from the molecular structure. In this paper, a novel deep learning method is proposed by devising DNA molecular graph feature and residual block structure for 6mA sites prediction in rice, named MGF6mARice. Firstly, the DNA sequence is changed into a simplified molecular input line entry system (SMILES) format, which reflects chemical molecular structure. Secondly, for the molecular structure data, we construct the DNA molecular graph feature based on the principle of graph convolutional network. Then, the residual block is designed to extract higher level, distinguishable features from molecular graph features. Finally, the prediction module is used to obtain the result of whether it is a 6mA site. By means of 10-fold cross-validation, MGF6mARice outperforms the state-of-the-art approaches. Multiple experiments have shown that the molecular graph feature and residual block can promote the performance of MGF6mARice in 6mA prediction. To the best of our knowledge, it is the first time to derive a feature of DNA sequence by considering the chemical molecular structure. We hope that MGF6mARice will be helpful for researchers to analyze 6mA sites in rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppsweek发布了新的文献求助10
1秒前
顺顺科研完成签到 ,获得积分10
1秒前
pK完成签到 ,获得积分10
3秒前
无花果应助守护星星采纳,获得10
3秒前
酷波er应助江边鸟采纳,获得20
3秒前
充电宝应助随意采纳,获得10
4秒前
情怀应助zzy加油采纳,获得10
4秒前
甜甜的紫菜完成签到 ,获得积分10
5秒前
酷炫醉山完成签到,获得积分10
5秒前
折光应助闪闪月亮采纳,获得20
6秒前
7秒前
7秒前
微笑完成签到,获得积分10
8秒前
伊丽莎白宝宝完成签到,获得积分10
9秒前
9秒前
敏感的鼠标完成签到 ,获得积分10
9秒前
VV发布了新的文献求助10
13秒前
13秒前
13秒前
CipherSage应助zhen9203采纳,获得10
14秒前
起司嗯发布了新的文献求助10
14秒前
很多奶油发布了新的文献求助10
15秒前
梦于行应助超级绾绾111采纳,获得10
15秒前
Flexy发布了新的文献求助10
16秒前
16秒前
17秒前
一川烟叶完成签到,获得积分10
17秒前
卿博文发布了新的文献求助10
17秒前
17秒前
吭吭菜菜完成签到,获得积分10
17秒前
18秒前
jsdiohfsiodhg完成签到,获得积分10
19秒前
fengzi151完成签到,获得积分10
19秒前
今后应助无比璀璨的番茄采纳,获得10
20秒前
cank发布了新的文献求助10
20秒前
Coco发布了新的文献求助30
20秒前
研友_VZG7GZ应助神勇的梦凡采纳,获得10
21秒前
慕青应助阳光的雁山采纳,获得10
21秒前
21秒前
江边鸟发布了新的文献求助20
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500212
关于积分的说明 11098471
捐赠科研通 3230734
什么是DOI,文献DOI怎么找? 1786110
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801625