MGF6mARice: prediction of DNA N6-methyladenine sites in rice by exploiting molecular graph feature and residual block

计算机科学 图形 残余物 特征(语言学) 人工智能 块(置换群论) DNA 分子图 模式识别(心理学) 计算生物学 生物系统 算法 化学 理论计算机科学 数学 生物 生物化学 组合数学 哲学 语言学
作者
Mengya Liu,Zhan-Li Sun,Zhigang Zeng,Kin-Man Lam
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:9
标识
DOI:10.1093/bib/bbac082
摘要

DNA N6-methyladenine (6mA) is produced by the N6 position of the adenine being methylated, which occurs at the molecular level, and is involved in numerous vital biological processes in the rice genome. Given the shortcomings of biological experiments, researchers have developed many computational methods to predict 6mA sites and achieved good performance. However, the existing methods do not consider the occurrence mechanism of 6mA to extract features from the molecular structure. In this paper, a novel deep learning method is proposed by devising DNA molecular graph feature and residual block structure for 6mA sites prediction in rice, named MGF6mARice. Firstly, the DNA sequence is changed into a simplified molecular input line entry system (SMILES) format, which reflects chemical molecular structure. Secondly, for the molecular structure data, we construct the DNA molecular graph feature based on the principle of graph convolutional network. Then, the residual block is designed to extract higher level, distinguishable features from molecular graph features. Finally, the prediction module is used to obtain the result of whether it is a 6mA site. By means of 10-fold cross-validation, MGF6mARice outperforms the state-of-the-art approaches. Multiple experiments have shown that the molecular graph feature and residual block can promote the performance of MGF6mARice in 6mA prediction. To the best of our knowledge, it is the first time to derive a feature of DNA sequence by considering the chemical molecular structure. We hope that MGF6mARice will be helpful for researchers to analyze 6mA sites in rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助落晨采纳,获得10
刚刚
1秒前
善良的安卉完成签到,获得积分10
1秒前
淡定吃吃发布了新的文献求助10
2秒前
yyf关闭了yyf文献求助
2秒前
3秒前
kokodayour完成签到,获得积分10
3秒前
Quin完成签到,获得积分10
3秒前
3秒前
冷艳乐松完成签到,获得积分10
4秒前
4秒前
4秒前
诸葛雪兰完成签到,获得积分10
5秒前
洛尚完成签到,获得积分10
5秒前
czq完成签到,获得积分10
5秒前
VVhahaha完成签到,获得积分10
6秒前
limof发布了新的文献求助10
6秒前
7秒前
小葡萄完成签到 ,获得积分10
7秒前
8秒前
wu发布了新的文献求助30
8秒前
9秒前
毕业就好发布了新的文献求助10
9秒前
9秒前
9秒前
冷艳乐松发布了新的文献求助10
10秒前
iedq完成签到 ,获得积分10
10秒前
嗯呢发布了新的文献求助10
10秒前
vivienne完成签到,获得积分10
10秒前
搜集达人应助2021的萌爷爷采纳,获得10
10秒前
烟花不能太放肆关注了科研通微信公众号
10秒前
zyy完成签到,获得积分10
10秒前
11秒前
11秒前
wanci应助细腻晓露采纳,获得10
11秒前
Lucas应助XinyiZhang采纳,获得10
12秒前
科研通AI2S应助芋头采纳,获得10
13秒前
瘦瘦的铅笔完成签到 ,获得积分10
13秒前
manan发布了新的文献求助10
13秒前
01259发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740