MGF6mARice: prediction of DNA N6-methyladenine sites in rice by exploiting molecular graph feature and residual block

计算机科学 图形 残余物 特征(语言学) 人工智能 块(置换群论) DNA 分子图 模式识别(心理学) 计算生物学 生物系统 算法 化学 理论计算机科学 数学 生物 生物化学 组合数学 哲学 语言学
作者
Mengya Liu,Zhan-Li Sun,Zhigang Zeng,Kin-Man Lam
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:9
标识
DOI:10.1093/bib/bbac082
摘要

DNA N6-methyladenine (6mA) is produced by the N6 position of the adenine being methylated, which occurs at the molecular level, and is involved in numerous vital biological processes in the rice genome. Given the shortcomings of biological experiments, researchers have developed many computational methods to predict 6mA sites and achieved good performance. However, the existing methods do not consider the occurrence mechanism of 6mA to extract features from the molecular structure. In this paper, a novel deep learning method is proposed by devising DNA molecular graph feature and residual block structure for 6mA sites prediction in rice, named MGF6mARice. Firstly, the DNA sequence is changed into a simplified molecular input line entry system (SMILES) format, which reflects chemical molecular structure. Secondly, for the molecular structure data, we construct the DNA molecular graph feature based on the principle of graph convolutional network. Then, the residual block is designed to extract higher level, distinguishable features from molecular graph features. Finally, the prediction module is used to obtain the result of whether it is a 6mA site. By means of 10-fold cross-validation, MGF6mARice outperforms the state-of-the-art approaches. Multiple experiments have shown that the molecular graph feature and residual block can promote the performance of MGF6mARice in 6mA prediction. To the best of our knowledge, it is the first time to derive a feature of DNA sequence by considering the chemical molecular structure. We hope that MGF6mARice will be helpful for researchers to analyze 6mA sites in rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SorryKing完成签到,获得积分10
1秒前
自然紫山发布了新的文献求助10
1秒前
Owen应助反方向的钟采纳,获得30
1秒前
鱼蛋发布了新的文献求助10
2秒前
完美世界应助124578采纳,获得10
2秒前
传奇3应助上瘾采纳,获得10
2秒前
Matsuteru_完成签到,获得积分10
2秒前
研友_VZG7GZ应助fatebear采纳,获得10
2秒前
3秒前
1461644768发布了新的文献求助10
3秒前
斯文败类应助周新哲采纳,获得10
3秒前
念念发布了新的文献求助10
3秒前
cl完成签到,获得积分10
4秒前
Lucides发布了新的文献求助10
4秒前
4秒前
慕青应助小平采纳,获得10
4秒前
GGGGG完成签到,获得积分10
5秒前
fantexi113完成签到,获得积分10
5秒前
5秒前
酷波er应助迷路路人采纳,获得10
5秒前
woshiwuziq举报Wwwwww求助涉嫌违规
5秒前
午午完成签到,获得积分20
6秒前
6秒前
7秒前
joy完成签到,获得积分10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
linduole发布了新的文献求助10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得20
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
风趣雪一应助张小科采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410541
求助须知:如何正确求助?哪些是违规求助? 4527950
关于积分的说明 14113813
捐赠科研通 4442609
什么是DOI,文献DOI怎么找? 2437990
邀请新用户注册赠送积分活动 1430032
关于科研通互助平台的介绍 1407965