One-step algorithm for fast-track localization and multi-category classification of histological subtypes in lung cancer

医学 肺癌 腺癌 放射科 癌症 核医学 人工智能 病理 内科学 计算机科学
作者
Jing Qi,Zhengqiao Deng,Guogui Sun,Shuang Qian,Li Liu,Bo Xu
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:154: 110443-110443 被引量:9
标识
DOI:10.1016/j.ejrad.2022.110443
摘要

Accumulated evidence has proven that computer-derived features from computed tomography (CT) through radiomics and deep learning technologies can identify extensive characteristics of pulmonary malignancies, such as nodules detection and malignant lesion discrimination. However, there are few studies on whether CT images can reflect histological subtypes of lung cancer through computer-derived features.Contrast-enhanced CT images prior treatment from 417 patients diagnosed with small cell lung cancer (SCLC), lung adenocarcinoma (ADC), or lung squamous cell carcinoma (SCC) were collected. ITK-SNAP software was used by trained radiologists for the manual delineation of tumor volume. Patients of each category (SCLC, ADC, SCC) were then randomly split into training datasets and test datasets in an approximately ratio of 8:2. After image pre-processing and augmentation, 25,042 CT images from the training datasets were used to train our self-developed deep learning model for fast-tracking tumor lesions and classifying corresponding histological subtypes simultaneously. The performance of the network was evaluated by accuracy, F1-score and weighted F1-average using 1,921 testing images based on parameters generated during training.The prediction accuracy of SCLC, ADC, and SCC were 0.83, 0.75 and 0.67, respectively. The weighted F1-average was 0.75. ADC obtained the best F1-score of 0.78, which was outperformed SCLC (0.77) and SCC (0.66). The corresponding AUC values of SCLC, ADC, and SCC were 0.87, 0.84, and 0.76, respectively. Only 0.24 s were required to simultaneously achieve functions of tumor localization and histological classification on a thoracic CT image slice. The heat map visualization illustrated the extracted tumor features to classify subtypes of lung cancer by the proposed model.The newly developed multi-task algorithm provides a CNN-based DL approach in lung cancer for automatically fast-tracking tumor lesions and classifying corresponding histological subtypes in one-step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
1秒前
夏青荷完成签到,获得积分10
1秒前
七七完成签到,获得积分10
1秒前
qq完成签到,获得积分10
3秒前
荡乎宇宙如虚舟完成签到,获得积分10
4秒前
林一完成签到,获得积分10
4秒前
4秒前
sad完成签到,获得积分10
5秒前
亭子完成签到,获得积分10
6秒前
7秒前
骑驴追火箭完成签到,获得积分10
7秒前
小杰完成签到,获得积分10
7秒前
9秒前
9秒前
1+1完成签到,获得积分0
10秒前
jason0023完成签到,获得积分10
11秒前
恩赐解脱发布了新的文献求助10
12秒前
碳酸氢钠完成签到,获得积分10
12秒前
渤海少年发布了新的文献求助10
13秒前
skyla1003完成签到 ,获得积分10
13秒前
xiaoying完成签到,获得积分10
14秒前
15秒前
iNk应助科研通管家采纳,获得10
16秒前
iNk应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
iNk应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
Simple完成签到,获得积分10
17秒前
小浪矢完成签到,获得积分10
17秒前
神勇语堂完成签到 ,获得积分10
18秒前
123完成签到,获得积分10
19秒前
19秒前
yiluyouni完成签到,获得积分10
19秒前
N维完成签到,获得积分10
19秒前
公西傲蕾完成签到,获得积分10
20秒前
yuuu完成签到 ,获得积分10
20秒前
21秒前
温暖糖豆完成签到 ,获得积分10
22秒前
胡楠完成签到,获得积分10
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408246
求助须知:如何正确求助?哪些是违规求助? 3012409
关于积分的说明 8854062
捐赠科研通 2699532
什么是DOI,文献DOI怎么找? 1480077
科研通“疑难数据库(出版商)”最低求助积分说明 684141
邀请新用户注册赠送积分活动 678462