Edge-AI: IoT Request Service Provisioning in Federated Edge Computing Using Actor-Critic Reinforcement Learning

边缘计算 计算机科学 边缘设备 GSM演进的增强数据速率 计算机网络 强化学习 供应 服务提供商 服务器 分布式计算 服务(商务) 计算机安全 云计算 人工智能 操作系统 经济 经济
作者
Hojjat Baghban,Amir Rezapour,Kuan‐Ching Li,Sirapop Nuannimnoi,ChingYao Huang
出处
期刊:IEEE Transactions on Engineering Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:10
标识
DOI:10.1109/tem.2022.3166769
摘要

Edge computing plays a critical role in the Internet of Things (IoT) environment as it potentially supports the time-critical IoT applications’ resources as well as latency requirements. In the near future, most edge service providers are envisioned to receive revenue from deploying these applications with the expenditures proportional to placing the offloaded requests from IoT devices and allocating the required resources. One way to maximize the edge profit and minimize the response latency is to integrate the edge nodes and form the edge federation. Therefore, edge service providers can have interoperability to distribute the IoT requests on the appropriate edge nodes in the light of providing satisfactory service levels to meet their objectives. Since the edge nodes are volatile and IoT time-critical applications are increasing, the edge nodes are envisioned to face massive traffic from IoT devices. Therefore, exploiting the traditional dynamic requests placement approaches cannot meet the SLA requirement of both IoT devices and edge service providers. In this article, we designed an intelligent reinforcement learning-based request service provisioning system (i.e., here, we call Edge-AI) as part of a smart edge orchestrator in the edge federation. We implement the proposed method, which is called DRL-Dispatcher, and compare it with greedy and random algorithms in edge federation. The experimental results show that the proposed DRL-Dispatcher performs better in terms of profit and low response latency as compared with the baseline approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫芝麻应助健康的向松采纳,获得20
1秒前
syx完成签到,获得积分10
1秒前
老实皮皮虾完成签到,获得积分10
2秒前
3秒前
Mr.D发布了新的文献求助10
3秒前
光纤陀螺完成签到,获得积分10
3秒前
4秒前
5秒前
Clara凤完成签到,获得积分10
6秒前
热电发布了新的文献求助10
7秒前
8秒前
琉璃如是发布了新的文献求助10
8秒前
肖淑美完成签到 ,获得积分10
8秒前
8秒前
小二郎应助xzh086采纳,获得10
9秒前
汉堡包应助追求最优解采纳,获得10
9秒前
9秒前
123Y完成签到,获得积分10
9秒前
10秒前
英姑应助Mr.D采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
田様应助科研通管家采纳,获得10
12秒前
雪白问兰应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
greywhiter发布了新的文献求助10
12秒前
鲤鱼小蕾完成签到,获得积分10
13秒前
独特凡松发布了新的文献求助10
13秒前
苹果惠完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160183
求助须知:如何正确求助?哪些是违规求助? 2811217
关于积分的说明 7891442
捐赠科研通 2470335
什么是DOI,文献DOI怎么找? 1315418
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038