Multi-objective Gray Wolf Optimization Algorithm for Multi-agent Pathfinding Problem

寻路 计算机科学 最优化问题 数学优化 优化算法 多智能体系统 人工智能 算法 理论计算机科学 数学 最短路径问题 图形
作者
Lianghao Wei,Zhaonian Cai,Kun Zhou
标识
DOI:10.1109/icet55676.2022.9824428
摘要

As a core problem of multi-agent systems, multiagent pathfinding has an important impact on the efficiency of multi-agent systems. Because of this, many novel multi-agent pathfinding methods have been proposed over the years. However, these methods have focused on different agents with different goals for research, and less research has been done on scenarios where different agents have the same goal. We propose a multiagent pathfinding method incorporating a multi-objective gray wolf optimization algorithm to solve the multi-agent pathfinding problem with the same objective. First, constrained optimization modeling is performed to obtain objective functions about agent wholeness and security. Then, the multi-objective gray wolf optimization algorithm is improved for solving the constrained optimization problem and further optimized for scenarios with insufficient computational resources. To verify the effectiveness of the multi-objective gray wolf optimization algorithm, we conduct experiments in a series of simulation environments and compare the improved multi-objective grey wolf optimization algorithm with some classical swarm intelligence optimization algorithms. The results show that the multi-agent pathfinding method incorporating the multi-objective gray wolf optimization algorithm is more efficient in handling multi-agent pathfinding problems with the same objective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Michelle采纳,获得10
1秒前
1秒前
郑159753完成签到,获得积分20
1秒前
共享精神应助wzgkeyantong采纳,获得10
1秒前
思源应助wzgkeyantong采纳,获得10
1秒前
华仔应助wzgkeyantong采纳,获得10
1秒前
科研通AI2S应助wzgkeyantong采纳,获得10
1秒前
orixero应助wzgkeyantong采纳,获得10
2秒前
安醉香完成签到,获得积分10
3秒前
路弈完成签到,获得积分10
3秒前
爱学习完成签到,获得积分20
6秒前
6秒前
nightmoonsun发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
酸奶七发布了新的文献求助10
7秒前
翎儿响叮当完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
平淡路人发布了新的文献求助10
11秒前
12秒前
12秒前
DYF完成签到,获得积分10
12秒前
FreeRice发布了新的文献求助10
12秒前
徐若楠发布了新的文献求助10
13秒前
NexusExplorer应助7qi采纳,获得10
13秒前
13秒前
鱼鱼鱼完成签到,获得积分10
14秒前
15秒前
sssss发布了新的文献求助10
16秒前
小胖发布了新的文献求助30
16秒前
16秒前
樊念烟发布了新的文献求助10
17秒前
传奇3应助1234采纳,获得10
18秒前
19秒前
Kimi发布了新的文献求助10
19秒前
20秒前
FashionBoy应助如期而至采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655