Defending against Backdoors in Federated Learning with Robust Learning Rate

后门 计算机科学 对手 计算机安全 集合(抽象数据类型) 对抗制 方案(数学) 人工智能 数学 数学分析 程序设计语言
作者
Mustafa Safa Özdayi,Murat Kantarcıoğlu,Yulia R. Gel
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (10): 9268-9276 被引量:60
标识
DOI:10.1609/aaai.v35i10.17118
摘要

Federated learning (FL) allows a set of agents to collaboratively train a model without sharing their potentially sensitive data. This makes FL suitable for privacy-preserving applications. At the same time, FL is susceptible to adversarial attacks due to decentralized and unvetted data. One important line of attacks against FL is the backdoor attacks. In a backdoor attack, an adversary tries to embed a backdoor functionality to the model during training that can later be activated to cause a desired misclassification. To prevent backdoor attacks, we propose a lightweight defense that requires minimal change to the FL protocol. At a high level, our defense is based on carefully adjusting the aggregation server's learning rate, per dimension and per round, based on the sign information of agents' updates. We first conjecture the necessary steps to carry a successful backdoor attack in FL setting, and then, explicitly formulate the defense based on our conjecture. Through experiments, we provide empirical evidence that supports our conjecture, and we test our defense against backdoor attacks under different settings. We observe that either backdoor is completely eliminated, or its accuracy is significantly reduced. Overall, our experiments suggest that our defense significantly outperforms some of the recently proposed defenses in the literature. We achieve this by having minimal influence over the accuracy of the trained models. In addition, we also provide convergence rate analysis for our proposed scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的秋寒完成签到,获得积分10
刚刚
自由梦岚发布了新的文献求助10
刚刚
水博士发布了新的文献求助10
1秒前
桐桐应助李明采纳,获得10
1秒前
2秒前
2秒前
sll0808完成签到,获得积分20
2秒前
廖喜林发布了新的文献求助10
3秒前
贴贴发布了新的文献求助10
3秒前
情怀应助石头采纳,获得10
3秒前
3秒前
青云完成签到,获得积分20
4秒前
搞怪网络发布了新的文献求助20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
cslghe应助霸气的老虎采纳,获得10
5秒前
grzzz发布了新的文献求助10
5秒前
5秒前
6秒前
李爱国应助shukq采纳,获得10
7秒前
Liii完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
深情安青应助研友_ngqjz8采纳,获得10
8秒前
小罗黑的完成签到,获得积分10
8秒前
8秒前
1z2x3s发布了新的文献求助10
8秒前
华仔应助纯真如松采纳,获得10
9秒前
lmfffff发布了新的文献求助10
9秒前
9秒前
10秒前
宫立辉发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
廖喜林完成签到,获得积分10
12秒前
Liu完成签到 ,获得积分10
12秒前
13秒前
搞怪网络完成签到,获得积分10
13秒前
13秒前
YUNI发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234