Defending against Backdoors in Federated Learning with Robust Learning Rate

后门 计算机科学 对手 计算机安全 集合(抽象数据类型) 对抗制 方案(数学) 人工智能 数学 数学分析 程序设计语言
作者
Mustafa Safa Özdayi,Murat Kantarcıoğlu,Yulia R. Gel
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (10): 9268-9276 被引量:60
标识
DOI:10.1609/aaai.v35i10.17118
摘要

Federated learning (FL) allows a set of agents to collaboratively train a model without sharing their potentially sensitive data. This makes FL suitable for privacy-preserving applications. At the same time, FL is susceptible to adversarial attacks due to decentralized and unvetted data. One important line of attacks against FL is the backdoor attacks. In a backdoor attack, an adversary tries to embed a backdoor functionality to the model during training that can later be activated to cause a desired misclassification. To prevent backdoor attacks, we propose a lightweight defense that requires minimal change to the FL protocol. At a high level, our defense is based on carefully adjusting the aggregation server's learning rate, per dimension and per round, based on the sign information of agents' updates. We first conjecture the necessary steps to carry a successful backdoor attack in FL setting, and then, explicitly formulate the defense based on our conjecture. Through experiments, we provide empirical evidence that supports our conjecture, and we test our defense against backdoor attacks under different settings. We observe that either backdoor is completely eliminated, or its accuracy is significantly reduced. Overall, our experiments suggest that our defense significantly outperforms some of the recently proposed defenses in the literature. We achieve this by having minimal influence over the accuracy of the trained models. In addition, we also provide convergence rate analysis for our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威威完成签到,获得积分10
1秒前
1秒前
弦星潺应助虚拟的柜子采纳,获得10
2秒前
orixero应助千寻采纳,获得10
4秒前
Atlas完成签到,获得积分20
5秒前
6秒前
烂漫奇异果完成签到 ,获得积分20
7秒前
优秀送终完成签到,获得积分10
8秒前
Ava应助logen采纳,获得30
9秒前
DAYTOY完成签到,获得积分10
9秒前
Atlas发布了新的文献求助10
10秒前
点点滴滴完成签到,获得积分10
10秒前
11秒前
healer完成签到,获得积分10
11秒前
一一应助优秀送终采纳,获得10
13秒前
点点滴滴发布了新的文献求助20
13秒前
echasl73完成签到,获得积分10
15秒前
Orange应助鲤鱼萧采纳,获得10
15秒前
大模型应助一只贝果采纳,获得10
15秒前
16秒前
和谐白猫关注了科研通微信公众号
16秒前
16秒前
dala完成签到,获得积分10
17秒前
17秒前
爱听歌的大地完成签到 ,获得积分10
18秒前
19秒前
火星上孤丝完成签到,获得积分20
20秒前
21秒前
21秒前
21秒前
Free_Dobby发布了新的文献求助10
21秒前
七昂完成签到,获得积分10
21秒前
21秒前
鲤鱼萧完成签到,获得积分10
21秒前
欧拉欧拉欧拉完成签到,获得积分10
23秒前
jevon应助完美的海秋采纳,获得10
23秒前
MET1完成签到,获得积分10
23秒前
23秒前
Orange应助唠叨的雁蓉采纳,获得10
24秒前
搜集达人应助xiaoxiaoliang采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238113
求助须知:如何正确求助?哪些是违规求助? 2883372
关于积分的说明 8230519
捐赠科研通 2551496
什么是DOI,文献DOI怎么找? 1380006
科研通“疑难数据库(出版商)”最低求助积分说明 648908
邀请新用户注册赠送积分活动 624570