已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Defending against Backdoors in Federated Learning with Robust Learning Rate

后门 计算机科学 对手 计算机安全 集合(抽象数据类型) 对抗制 方案(数学) 人工智能 数学 数学分析 程序设计语言
作者
Mustafa Safa Özdayi,Murat Kantarcıoğlu,Yulia R. Gel
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (10): 9268-9276 被引量:60
标识
DOI:10.1609/aaai.v35i10.17118
摘要

Federated learning (FL) allows a set of agents to collaboratively train a model without sharing their potentially sensitive data. This makes FL suitable for privacy-preserving applications. At the same time, FL is susceptible to adversarial attacks due to decentralized and unvetted data. One important line of attacks against FL is the backdoor attacks. In a backdoor attack, an adversary tries to embed a backdoor functionality to the model during training that can later be activated to cause a desired misclassification. To prevent backdoor attacks, we propose a lightweight defense that requires minimal change to the FL protocol. At a high level, our defense is based on carefully adjusting the aggregation server's learning rate, per dimension and per round, based on the sign information of agents' updates. We first conjecture the necessary steps to carry a successful backdoor attack in FL setting, and then, explicitly formulate the defense based on our conjecture. Through experiments, we provide empirical evidence that supports our conjecture, and we test our defense against backdoor attacks under different settings. We observe that either backdoor is completely eliminated, or its accuracy is significantly reduced. Overall, our experiments suggest that our defense significantly outperforms some of the recently proposed defenses in the literature. We achieve this by having minimal influence over the accuracy of the trained models. In addition, we also provide convergence rate analysis for our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pipi发布了新的文献求助10
刚刚
仓鼠球完成签到,获得积分10
1秒前
kk发布了新的文献求助10
1秒前
2秒前
lcj1014发布了新的文献求助10
3秒前
XDGY完成签到,获得积分10
3秒前
烟花应助周城采纳,获得10
3秒前
3秒前
香蕉觅云应助闪闪皮卡丘采纳,获得10
3秒前
4秒前
李爱国应助xxttt采纳,获得10
5秒前
5秒前
马先森关注了科研通微信公众号
5秒前
汉堡包应助隐形的雪碧采纳,获得30
6秒前
clh123发布了新的文献求助10
8秒前
8秒前
爱读文献发布了新的文献求助10
9秒前
9秒前
舒伯特完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
13秒前
13秒前
阴香萍发布了新的文献求助10
13秒前
华仔应助妖孽采纳,获得10
14秒前
怡然凝云完成签到,获得积分10
15秒前
周城发布了新的文献求助10
15秒前
无辜叫兽发布了新的文献求助10
16秒前
谦让芷蕊发布了新的文献求助50
17秒前
爱读文献完成签到,获得积分10
18秒前
xxttt发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
21秒前
23秒前
大牛牛完成签到,获得积分10
24秒前
香蕉觅云应助隐形的雪碧采纳,获得30
24秒前
善学以致用应助兰先生采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322726
求助须知:如何正确求助?哪些是违规求助? 4464117
关于积分的说明 13892377
捐赠科研通 4355535
什么是DOI,文献DOI怎么找? 2392378
邀请新用户注册赠送积分活动 1386013
关于科研通互助平台的介绍 1355810