异质结
材料科学
光激发
响应度
电子迁移率
石墨烯
光电子学
光电流
光电导性
光电效应
电子
光电探测器
纳米技术
物理
激发态
核物理学
量子力学
作者
Yuzhong Chen,Cheng Sun,Hongzhi Zhou,Jialin Li,Wei Xin,Haiyang Xu,Haiming Zhu
标识
DOI:10.1021/acs.jpclett.1c02967
摘要
Because of its broad absorption and high carrier mobility, graphene has been regarded as a promising photoactive material for optoelectronics. However, its ultrashort photoexcited carrier lifetime greatly restricts the device performance. Herein, we show that by constructing a graphene/WS2/MoS2 vertical heterostructure with a cascade electron-transfer pathway, the hot electrons in graphene under low-energy photoexcitation can efficiently transfer through WS2 to MoS2 in 180 fs, thus effectively photogating the graphene layer. Because of the spatial separation and energy barrier imposed by the WS2 intermediate layer which retards back electron transfer, the photocarrier lifetime in graphene is significantly prolonged to ∼382.7 ps, more than 2 orders of magnitude longer than in isolated graphene and graphene/WS2 binary heterostructure. The prolonged photocarrier lifetime in graphene leads to dramatically enhanced photocurrent generation and photoresponsivity. This study offers an exciting approach to control photocarrier lifetime in graphene for hot carrier devices with simultaneous broadband and high responsivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI