Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode

终端(电信) 调度(生产过程) 计算机科学 容器(类型理论) 工程类 结构工程 运营管理 计算机网络 机械工程
作者
Baoyun Xu,Depei Jie,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:162: 107695-107695 被引量:31
标识
DOI:10.1016/j.cie.2021.107695
摘要

• The integrated scheduling problem under U-shaped automated container terminal layout is studied. • Addtionally, the conflicts of AGVs path planning is considered. • By controlling the speeds of the AGV and the dual cantilever rail cranes, the spatiotemporal synchronization is realized. • A reinforcement learning based on genetic hyper-heuristic algorithm is proposed to solve it. This paper proposes an integrated scheduling optimization model based on mixed integer programming to analytically characterize the U-shaped automated container terminal layout and handling technology. We focus on dual trolley quay cranes, conflict-free automated guided vehicles (AGVs) and dual cantilever rail cranes under loading and unloading mode, which have rarely been simultaneously studied in the literature, as most prior research has addressed traditional container terminals. We eliminate the waiting time during the interaction between AGV and dual cantilever rail crane to realize spatiotemporal synchronization and minimize the completion time of all tasks. We employ a reinforcement learning based hyper-heuristic genetic algorithm to solve the model, specifically, better solution results for reward and punishment mechanism incorporating reinforcement learning, higher versatility independent of specific problems, stronger scalability of low-level algorithms. We investigate which algorithm is better by comparing the proposed algorithm with bi-level genetic algorithm, adaptive genetic algorithm, hybrid genetic algorithm and cuckoo search algorithm. We conduct small-sized and large-sized experiments to validate the performance of the proposed model and algorithm. The results show that the proposed model and algorithm can not only avoid the conflicts among AGVs but also significantly improve handling efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依然At完成签到,获得积分10
刚刚
丘比特应助神仙渔采纳,获得10
刚刚
研友_LX7478完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
FashionBoy应助小蚊子采纳,获得20
1秒前
吉尼太美完成签到,获得积分10
1秒前
1秒前
孙新月发布了新的文献求助10
2秒前
从容的戎完成签到,获得积分10
3秒前
ccq完成签到,获得积分10
4秒前
小刘不搞科研完成签到,获得积分10
4秒前
iceeer完成签到,获得积分10
4秒前
gslscuer发布了新的文献求助10
4秒前
菜鸡学VASP完成签到 ,获得积分10
5秒前
6秒前
6秒前
baobeikk发布了新的文献求助10
7秒前
LXZ发布了新的文献求助10
7秒前
Ida完成签到 ,获得积分10
7秒前
叶子完成签到,获得积分10
7秒前
tanghong完成签到,获得积分10
7秒前
白馨雨发布了新的文献求助10
7秒前
7秒前
8秒前
ll完成签到,获得积分10
8秒前
无心的青槐完成签到,获得积分10
8秒前
8秒前
一叶扁舟完成签到,获得积分10
9秒前
123321完成签到,获得积分10
9秒前
李健的小迷弟应助小灰灰采纳,获得10
9秒前
lalala发布了新的文献求助10
10秒前
xia_完成签到,获得积分10
10秒前
10秒前
貔貅完成签到,获得积分10
10秒前
丁一发布了新的文献求助20
12秒前
️语完成签到,获得积分10
12秒前
小蚊子发布了新的文献求助20
12秒前
zhangzhang完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792