Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode

终端(电信) 调度(生产过程) 计算机科学 容器(类型理论) 工程类 结构工程 运营管理 计算机网络 机械工程
作者
Bowei Xu,Depei Jie,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:162: 107695-107695 被引量:73
标识
DOI:10.1016/j.cie.2021.107695
摘要

• The integrated scheduling problem under U-shaped automated container terminal layout is studied. • Addtionally, the conflicts of AGVs path planning is considered. • By controlling the speeds of the AGV and the dual cantilever rail cranes, the spatiotemporal synchronization is realized. • A reinforcement learning based on genetic hyper-heuristic algorithm is proposed to solve it. This paper proposes an integrated scheduling optimization model based on mixed integer programming to analytically characterize the U-shaped automated container terminal layout and handling technology. We focus on dual trolley quay cranes, conflict-free automated guided vehicles (AGVs) and dual cantilever rail cranes under loading and unloading mode, which have rarely been simultaneously studied in the literature, as most prior research has addressed traditional container terminals. We eliminate the waiting time during the interaction between AGV and dual cantilever rail crane to realize spatiotemporal synchronization and minimize the completion time of all tasks. We employ a reinforcement learning based hyper-heuristic genetic algorithm to solve the model, specifically, better solution results for reward and punishment mechanism incorporating reinforcement learning, higher versatility independent of specific problems, stronger scalability of low-level algorithms. We investigate which algorithm is better by comparing the proposed algorithm with bi-level genetic algorithm, adaptive genetic algorithm, hybrid genetic algorithm and cuckoo search algorithm. We conduct small-sized and large-sized experiments to validate the performance of the proposed model and algorithm. The results show that the proposed model and algorithm can not only avoid the conflicts among AGVs but also significantly improve handling efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭慧发布了新的文献求助10
1秒前
2秒前
2秒前
乐乐应助炙热小小采纳,获得10
2秒前
splatoon完成签到,获得积分10
3秒前
Tingting发布了新的文献求助10
3秒前
Kate发布了新的文献求助10
3秒前
3秒前
3秒前
斯文败类应助stone采纳,获得10
3秒前
小灰灰发布了新的文献求助10
3秒前
crowd_lpy完成签到,获得积分10
3秒前
Flaoun4发布了新的文献求助10
3秒前
5秒前
852应助梦茵采纳,获得10
5秒前
Culto发布了新的文献求助10
5秒前
TTOM完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Richard发布了新的文献求助10
7秒前
合适苗条发布了新的文献求助10
7秒前
内向苡完成签到,获得积分10
7秒前
7秒前
清风拂山岗完成签到,获得积分10
7秒前
8秒前
花誓lydia发布了新的文献求助10
8秒前
9秒前
Twonej应助ZLY采纳,获得30
10秒前
10秒前
123发布了新的文献求助10
11秒前
11秒前
烟花应助QGK采纳,获得30
11秒前
小冉发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
momo发布了新的文献求助10
13秒前
n1gern发布了新的文献求助10
13秒前
Flaoun4完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812