Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode

终端(电信) 调度(生产过程) 计算机科学 容器(类型理论) 工程类 结构工程 运营管理 计算机网络 机械工程
作者
Bowei Xu,Depei Jie,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:162: 107695-107695 被引量:73
标识
DOI:10.1016/j.cie.2021.107695
摘要

• The integrated scheduling problem under U-shaped automated container terminal layout is studied. • Addtionally, the conflicts of AGVs path planning is considered. • By controlling the speeds of the AGV and the dual cantilever rail cranes, the spatiotemporal synchronization is realized. • A reinforcement learning based on genetic hyper-heuristic algorithm is proposed to solve it. This paper proposes an integrated scheduling optimization model based on mixed integer programming to analytically characterize the U-shaped automated container terminal layout and handling technology. We focus on dual trolley quay cranes, conflict-free automated guided vehicles (AGVs) and dual cantilever rail cranes under loading and unloading mode, which have rarely been simultaneously studied in the literature, as most prior research has addressed traditional container terminals. We eliminate the waiting time during the interaction between AGV and dual cantilever rail crane to realize spatiotemporal synchronization and minimize the completion time of all tasks. We employ a reinforcement learning based hyper-heuristic genetic algorithm to solve the model, specifically, better solution results for reward and punishment mechanism incorporating reinforcement learning, higher versatility independent of specific problems, stronger scalability of low-level algorithms. We investigate which algorithm is better by comparing the proposed algorithm with bi-level genetic algorithm, adaptive genetic algorithm, hybrid genetic algorithm and cuckoo search algorithm. We conduct small-sized and large-sized experiments to validate the performance of the proposed model and algorithm. The results show that the proposed model and algorithm can not only avoid the conflicts among AGVs but also significantly improve handling efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清和月发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小蜜蜂完成签到 ,获得积分10
4秒前
5秒前
小白完成签到 ,获得积分10
6秒前
郝好发布了新的文献求助10
6秒前
彭于晏应助飞快的孱采纳,获得10
6秒前
dkun完成签到,获得积分10
7秒前
大胆的弼发布了新的文献求助10
8秒前
StrawCc完成签到 ,获得积分10
8秒前
江流有声完成签到 ,获得积分10
9秒前
9秒前
杨乃彬完成签到,获得积分10
10秒前
syhero完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
Alicia完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
xiewuhua完成签到,获得积分10
13秒前
13秒前
qian发布了新的文献求助10
15秒前
15秒前
平淡小白菜完成签到,获得积分10
17秒前
Hello应助Hibiscus95采纳,获得10
18秒前
墨薄凉完成签到 ,获得积分10
18秒前
19秒前
19秒前
JamesPei应助彭于彦祖采纳,获得10
20秒前
mutong1789完成签到,获得积分10
20秒前
居北完成签到 ,获得积分10
20秒前
21秒前
能干巨人完成签到,获得积分10
22秒前
郝好完成签到,获得积分10
22秒前
糯糯发布了新的文献求助10
22秒前
nove999完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
无花果应助着急的问丝采纳,获得10
26秒前
yuanmeng434完成签到,获得积分10
28秒前
大海游鱼完成签到 ,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749338
求助须知:如何正确求助?哪些是违规求助? 5457686
关于积分的说明 15363252
捐赠科研通 4888801
什么是DOI,文献DOI怎么找? 2628695
邀请新用户注册赠送积分活动 1576974
关于科研通互助平台的介绍 1533712