Integrated scheduling optimization of U-shaped automated container terminal under loading and unloading mode

终端(电信) 调度(生产过程) 计算机科学 容器(类型理论) 工程类 结构工程 运营管理 计算机网络 机械工程
作者
Bowei Xu,Depei Jie,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:162: 107695-107695 被引量:73
标识
DOI:10.1016/j.cie.2021.107695
摘要

• The integrated scheduling problem under U-shaped automated container terminal layout is studied. • Addtionally, the conflicts of AGVs path planning is considered. • By controlling the speeds of the AGV and the dual cantilever rail cranes, the spatiotemporal synchronization is realized. • A reinforcement learning based on genetic hyper-heuristic algorithm is proposed to solve it. This paper proposes an integrated scheduling optimization model based on mixed integer programming to analytically characterize the U-shaped automated container terminal layout and handling technology. We focus on dual trolley quay cranes, conflict-free automated guided vehicles (AGVs) and dual cantilever rail cranes under loading and unloading mode, which have rarely been simultaneously studied in the literature, as most prior research has addressed traditional container terminals. We eliminate the waiting time during the interaction between AGV and dual cantilever rail crane to realize spatiotemporal synchronization and minimize the completion time of all tasks. We employ a reinforcement learning based hyper-heuristic genetic algorithm to solve the model, specifically, better solution results for reward and punishment mechanism incorporating reinforcement learning, higher versatility independent of specific problems, stronger scalability of low-level algorithms. We investigate which algorithm is better by comparing the proposed algorithm with bi-level genetic algorithm, adaptive genetic algorithm, hybrid genetic algorithm and cuckoo search algorithm. We conduct small-sized and large-sized experiments to validate the performance of the proposed model and algorithm. The results show that the proposed model and algorithm can not only avoid the conflicts among AGVs but also significantly improve handling efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神仙师姐应助巫马荧采纳,获得10
刚刚
Thea完成签到 ,获得积分10
1秒前
1秒前
香蕉觅云应助发嗲的戎采纳,获得10
1秒前
琉璃岁月完成签到,获得积分10
2秒前
小二郎应助apollo2002采纳,获得10
3秒前
alaxin完成签到,获得积分10
3秒前
百注册发布了新的文献求助10
3秒前
Tsui发布了新的文献求助10
4秒前
qq发布了新的文献求助30
5秒前
公孙朝雨完成签到 ,获得积分10
5秒前
jackten发布了新的文献求助10
5秒前
海子完成签到,获得积分10
6秒前
6秒前
6秒前
实况足球KKK完成签到,获得积分10
8秒前
lisiran完成签到,获得积分10
8秒前
BPX完成签到,获得积分10
8秒前
Gdhdjxbbx完成签到,获得积分10
8秒前
8秒前
欧锡萍完成签到,获得积分20
9秒前
星夜完成签到,获得积分10
10秒前
852应助zz采纳,获得10
10秒前
11秒前
思源应助xymy采纳,获得10
11秒前
11秒前
鹤九发布了新的文献求助10
12秒前
归尘发布了新的文献求助10
12秒前
华仔应助如意草丛采纳,获得10
13秒前
上官若男应助111111采纳,获得10
13秒前
晴烟ZYM发布了新的文献求助30
14秒前
Heart发布了新的文献求助10
14秒前
xymy完成签到,获得积分20
15秒前
Hubert发布了新的文献求助10
15秒前
无花果应助ww采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
pokexuejiao发布了新的文献求助20
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Iridescent完成签到 ,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474