显微镜
反褶积
深度学习
人工智能
计算机科学
图像分辨率
生物医学工程
材料科学
分辨率(逻辑)
穿透深度
生成对抗网络
光学
计算机视觉
物理
算法
医学
作者
Shengfu Cheng,Yingying Zhou,Jiangbo Chen,Huanhao Li,Lidai Wang,Puxiang Lai
出处
期刊:Photoacoustics
[Elsevier]
日期:2021-11-03
卷期号:25: 100314-100314
被引量:35
标识
DOI:10.1016/j.pacs.2021.100314
摘要
Optical-resolution photoacoustic microscopy (OR-PAM) enjoys superior spatial resolution and has received intense attention in recent years. The application, however, has been limited to shallow depths because of strong scattering of light in biological tissues. In this work, we propose to achieve deep-penetrating OR-PAM performance by using deep learning enabled image transformation on blurry living mouse vascular images that were acquired with an acoustic-resolution photoacoustic microscopy (AR-PAM) setup. A generative adversarial network (GAN) was trained in this study and improved the imaging lateral resolution of AR-PAM from 54.0 µm to 5.1 µm, comparable to that of a typical OR-PAM (4.7 µm). The feasibility of the network was evaluated with living mouse ear data, producing superior microvasculature images that outperforms blind deconvolution. The generalization of the network was validated with in vivo mouse brain data. Moreover, it was shown experimentally that the deep-learning method can retain high resolution at tissue depths beyond one optical transport mean free path. Whilst it can be further improved, the proposed method provides new horizons to expand the scope of OR-PAM towards deep-tissue imaging and wide applications in biomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI