1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models

启发式 销售损失 提前期 计算机科学 对偶(语法数字) 泊松分布 数学优化 持有成本 库存控制 运筹学 经济 数学 运营管理 统计 文学类 艺术
作者
Linwei Xin
出处
期刊:Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:70 (1): 111-128 被引量:11
标识
DOI:10.1287/opre.2021.2150
摘要

Stochastic inventory systems with lead times are often challenging to optimize, including single-sourcing lost-sales and dual-sourcing systems. Recent numerical results suggest that capped policies demonstrate superior performance over existing heuristics. However, the superior performance lacks a theoretical foundation. In “1.79-Approximation Algorithms for Continuous Review Single-Sourcing Lost-Sales and Dual-Sourcing Inventory Models,” the author provides a theoretical foundation for this phenomenon in two classical inventory models. First, in a continuous review lost-sales model with lead times and Poisson demand, he proves that a capped base-stock policy has a worst-case performance guarantee of 1.79 by conducting an asymptotic analysis under a large penalty cost and lead time. Second, in a more complex continuous review dual-sourcing model with general lead times and Poisson demand, he proves that a similar capped dual-index policy has a worst-case performance guarantee of 1.79 under large lead time and ordering cost differences. The results provide a deeper understanding of the superior numerical performance of capped policies and present a new approach to proving worst-case performance guarantees of simple policies in hard inventory problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanggg发布了新的文献求助10
1秒前
歪比巴卜发布了新的文献求助10
1秒前
Owen应助刘亚玲采纳,获得10
3秒前
核桃发布了新的文献求助10
4秒前
多组学12完成签到,获得积分20
5秒前
密林小叶子完成签到,获得积分10
5秒前
美兮完成签到 ,获得积分10
5秒前
船锚在玉龙雪山完成签到,获得积分10
5秒前
sawyer完成签到,获得积分20
6秒前
7秒前
英俊的铭应助歪比巴卜采纳,获得10
8秒前
9秒前
9秒前
10秒前
11秒前
13秒前
科研通AI2S应助chenjj采纳,获得10
15秒前
15秒前
huangbing123发布了新的文献求助10
15秒前
17秒前
17秒前
简单茗茗完成签到,获得积分20
17秒前
sawyer发布了新的文献求助10
17秒前
简单7879完成签到,获得积分10
18秒前
19秒前
Nnn发布了新的文献求助10
20秒前
21秒前
21秒前
Elma发布了新的文献求助10
22秒前
情怀应助粗暴的大门采纳,获得10
22秒前
Aqua发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
Ava应助多组学12采纳,获得10
24秒前
丰富的谷菱完成签到,获得积分10
25秒前
啰友痕武次子完成签到,获得积分10
26秒前
我不爱池鱼应助GY97采纳,获得10
26秒前
科研通AI2S应助轩辕沛柔采纳,获得30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487