Infrared Small Target Detection via Interpatch Correlation Enhancement and Joint Local Visual Saliency Prior

计算机科学 稳健性(进化) 人工智能 模式识别(心理学) 特征提取 相关性 目标检测 特征(语言学) 计算机视觉
作者
Chunmin Zhang,Yifan He,Qian Tang,Zhengyi Chen,Tingkui Mu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14
标识
DOI:10.1109/tgrs.2021.3128189
摘要

Small target detection is the primary technology for infrared search and tracking (IRST) systems and plays a vital role in practical applications. Existing algorithms have the following challenges: 1) insufficient local and nonlocal feature extraction and 2) imbalance between accuracy and real-time detection performance. In this study, a novel model for fast detection based on interpatch correlation enhancement (IPCE) and joint local visual saliency prior is proposed to overcome such issues. Regarding the correlation in interpatch dimension, the improved tensor nuclear norm is used to further extract the low-rank structure of the background tensor, which fully exploits the low-rank component and reduces the iteration times. Furthermore, with the hypothesis that the target is locally saliency, a prior model based on the visual saliency mechanism is proposed as the constraint of the target tensor. It effectively reduces the false detection of the sparse edge structure. In general, the proposed IPCE jointly exploits both local and nonlocal correlation of the original image, achieving robustness in different scenarios. Finally, the proposed model is solved by the alternating direction method of multipliers (ADMM). Experiments on seven datasets demonstrate that IPCE outperforms the state of the arts in terms of the balance between detection efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈罗完成签到,获得积分10
刚刚
1秒前
2秒前
jing完成签到,获得积分10
2秒前
2秒前
共享精神应助lxlcx采纳,获得10
2秒前
LZC完成签到,获得积分10
3秒前
xiaohanzai88完成签到,获得积分10
3秒前
umil发布了新的文献求助10
4秒前
xzx发布了新的文献求助10
4秒前
wdn0411完成签到,获得积分10
5秒前
人生何处不青山完成签到 ,获得积分10
5秒前
翟易蓉发布了新的文献求助10
5秒前
诚心梦之完成签到,获得积分10
6秒前
科研通AI2S应助牛诗悦采纳,获得10
6秒前
6秒前
飞雪残冰完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
zhangjx发布了新的文献求助50
9秒前
chiyu完成签到,获得积分10
10秒前
Demi完成签到,获得积分10
11秒前
xiaoyezi123完成签到,获得积分10
11秒前
12秒前
萧布完成签到,获得积分10
12秒前
ggg完成签到,获得积分10
12秒前
13秒前
在水一方应助dannnnn采纳,获得10
13秒前
labxgr完成签到,获得积分10
13秒前
13秒前
jjb123666完成签到,获得积分20
14秒前
wxyinhefeng完成签到 ,获得积分10
15秒前
汉堡包应助欢快小土豆采纳,获得30
15秒前
16秒前
加加油发布了新的文献求助10
16秒前
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012