粉煤灰
电解
萃取(化学)
化学
分离过程
材料科学
工业废物
煤
冶金
废物管理
色谱法
电极
电解质
有机化学
工程类
物理化学
作者
Y. Shi,Ke Jiang,Ting‐an Zhang,Xiaofeng Zhu
标识
DOI:10.1016/j.wasman.2021.10.019
摘要
A significant amount of coal fly ash is generated and this type of waste material causes severe environmental hazards. Metal (Al and Fe) extraction from coal fly ash is beneficial to the resource utilization of waste coal fly ash. However, the coexistence of Al and Fe in coal fly ash means that the separation of Al and Fe is required, which is a key and difficult step to prepare high value-added products from coal fly ash. This work presents a novel electrolysis method to alter the charge sequence of Al3+, Fe3+, and H2O, leading to a process different from their natural tendency for simultaneous separation of Fe3+ and Al3+, and extraction of Fe. The single iron removal efficiency was 43.48%, and the aluminum extraction efficiency was <0.30% under optimal conditions. The iron product had a purity of 98.3 wt% Fe, 0.45 wt% Al, and 0.18 wt% S. This process occurs without chemical additions and expensive membranes, avoiding impurity introduction, slag generation, and membrane limitations. Fe(s), H2(g), Al2(SO4)3(aq), and O2(g) are the main products during the electrolysis. Flake Fe is selectively produced instead of colloidal Fe(OH)3. Fe is a magnetic substance and is easier to remove from the solution by magnets than colloidal Fe(OH)3. H2 is a green fuel. Wastewater (Al2(SO4)3(aq)) can be directly used to further extract alumina. Therefore, this study provides an alternative method of zero pollution discharge for simultaneous separation of Fe3+ and Al3+, and extraction of Fe from coal fly ash leachate.
科研通智能强力驱动
Strongly Powered by AbleSci AI