清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Source Fusion Domain Adaptation Using Resting-State Knowledge for Motor Imagery Classification Tasks

计算机科学 学习迁移 运动表象 人工智能 脑电图 正规化(语言学) 脑-机接口 域适应 模式识别(心理学) 机器学习 语音识别 心理学 分类器(UML) 精神科
作者
Lei Zhu,Junting Yang,Wangpan Ding,Jieping Zhu,Ping Xu,Nanjiao Ying,Jianhai Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21772-21781 被引量:11
标识
DOI:10.1109/jsen.2021.3101684
摘要

Transfer learning is the method that makes use of knowledge from other fields to solve problems in related fields. It has been shown that it can deal with the problem of insufficient labeled data for new users or new tasks in the brain-computer interface. Domain adaptation is one of the transfer learning methods which is widely used for its excellent performance. Here, the offline cross-subject EEG signal classification is mainly focused on. The unlabeled EEG trials of the new user are classified by using the EEG trials with labels from source subjects. In this paper, a novel transfer learning method called multi-source fusion adaptation regularization (MFAR) is proposed. MFAR preprocesses the EEG signal by aligning the motor imagery trials to their resting state trials, and can reduce the differences among subjects. It also defines a learning framework by combining weighted balanced distribution adaptation (W-BDA), source empirical risk, and manifold regularization to further reduce the variation between source and target domains. We validated the method on two BCI Competition IV datasets for motor imagery tasks. In the absence of labeled EEG trials of the target subject, compared with the excellent counterparts, the classification accuracy increases by 9.28% and 11.73%. After the alignment algorithm is added, the accuracy of the MFAR is improved by 9.36% and 4.17% on the basis. The experimental results show that our learning framework outperformed several state-of-the-art transfer learning algorithms. Even when the training data from the new user are sufficient, the proposed approach achieves good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
天空不空完成签到,获得积分10
21秒前
天空不空发布了新的文献求助10
26秒前
科目三应助萌大叔采纳,获得10
29秒前
彭于晏应助YepbingCHOI采纳,获得10
37秒前
39秒前
cjh完成签到,获得积分10
1分钟前
1分钟前
宝宝烤面包完成签到 ,获得积分10
1分钟前
2分钟前
jiaoxiuxiu发布了新的文献求助10
2分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
widesky777完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
英俊的铭应助77采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
紫熊完成签到,获得积分10
4分钟前
4分钟前
regene完成签到,获得积分10
4分钟前
tufei完成签到,获得积分10
4分钟前
5分钟前
77发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
科研搬运工完成签到,获得积分10
6分钟前
假萌完成签到,获得积分10
6分钟前
丘比特应助77采纳,获得10
6分钟前
7分钟前
铁妹儿完成签到 ,获得积分10
7分钟前
归尘应助科研通管家采纳,获得10
7分钟前
Akim应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307460
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500336
捐赠科研通 2615463
什么是DOI,文献DOI怎么找? 1428912
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648494