Multi-Source Fusion Domain Adaptation Using Resting-State Knowledge for Motor Imagery Classification Tasks

计算机科学 学习迁移 运动表象 人工智能 脑电图 正规化(语言学) 脑-机接口 域适应 模式识别(心理学) 机器学习 语音识别 心理学 分类器(UML) 精神科
作者
Lei Zhu,Junting Yang,Wangpan Ding,Jieping Zhu,Ping Xu,Nanjiao Ying,Jianhai Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (19): 21772-21781 被引量:24
标识
DOI:10.1109/jsen.2021.3101684
摘要

Transfer learning is the method that makes use of knowledge from other fields to solve problems in related fields. It has been shown that it can deal with the problem of insufficient labeled data for new users or new tasks in the brain-computer interface. Domain adaptation is one of the transfer learning methods which is widely used for its excellent performance. Here, the offline cross-subject EEG signal classification is mainly focused on. The unlabeled EEG trials of the new user are classified by using the EEG trials with labels from source subjects. In this paper, a novel transfer learning method called multi-source fusion adaptation regularization (MFAR) is proposed. MFAR preprocesses the EEG signal by aligning the motor imagery trials to their resting state trials, and can reduce the differences among subjects. It also defines a learning framework by combining weighted balanced distribution adaptation (W-BDA), source empirical risk, and manifold regularization to further reduce the variation between source and target domains. We validated the method on two BCI Competition IV datasets for motor imagery tasks. In the absence of labeled EEG trials of the target subject, compared with the excellent counterparts, the classification accuracy increases by 9.28% and 11.73%. After the alignment algorithm is added, the accuracy of the MFAR is improved by 9.36% and 4.17% on the basis. The experimental results show that our learning framework outperformed several state-of-the-art transfer learning algorithms. Even when the training data from the new user are sufficient, the proposed approach achieves good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
我是老大应助朱妙彤采纳,获得10
2秒前
2秒前
scanker1981完成签到,获得积分10
3秒前
生动之云发布了新的文献求助10
3秒前
wyy发布了新的文献求助10
3秒前
JulyChen发布了新的文献求助10
3秒前
万能图书馆应助墨宁采纳,获得10
4秒前
热心市民小红花应助yuM采纳,获得10
4秒前
养猪的张三完成签到,获得积分10
5秒前
5秒前
WQB完成签到,获得积分10
6秒前
lanyun00123完成签到,获得积分10
6秒前
今后应助周浅采纳,获得10
6秒前
swsx1317完成签到,获得积分10
6秒前
6秒前
Purple发布了新的文献求助10
7秒前
小爽完成签到,获得积分0
7秒前
hyx发布了新的文献求助20
8秒前
科隆龙发布了新的文献求助10
8秒前
tyj发布了新的文献求助10
8秒前
Nancy完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
aa完成签到,获得积分10
10秒前
12秒前
无花果应助学术嫪毐采纳,获得10
12秒前
13秒前
艾思米利发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
fd163c发布了新的文献求助10
15秒前
yookia应助杨小黑采纳,获得10
15秒前
15秒前
WWshu应助442402586@qq.com采纳,获得10
15秒前
rendong4009发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961892
求助须知:如何正确求助?哪些是违规求助? 3508143
关于积分的说明 11139862
捐赠科研通 3240824
什么是DOI,文献DOI怎么找? 1791076
邀请新用户注册赠送积分活动 872725
科研通“疑难数据库(出版商)”最低求助积分说明 803344