Multi-Source Fusion Domain Adaptation Using Resting-State Knowledge for Motor Imagery Classification Tasks

计算机科学 学习迁移 运动表象 人工智能 脑电图 正规化(语言学) 脑-机接口 域适应 模式识别(心理学) 机器学习 语音识别 心理学 分类器(UML) 精神科
作者
Lei Zhu,Junting Yang,Wangpan Ding,Jieping Zhu,Ping Xu,Nanjiao Ying,Jianhai Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (19): 21772-21781 被引量:26
标识
DOI:10.1109/jsen.2021.3101684
摘要

Transfer learning is the method that makes use of knowledge from other fields to solve problems in related fields. It has been shown that it can deal with the problem of insufficient labeled data for new users or new tasks in the brain-computer interface. Domain adaptation is one of the transfer learning methods which is widely used for its excellent performance. Here, the offline cross-subject EEG signal classification is mainly focused on. The unlabeled EEG trials of the new user are classified by using the EEG trials with labels from source subjects. In this paper, a novel transfer learning method called multi-source fusion adaptation regularization (MFAR) is proposed. MFAR preprocesses the EEG signal by aligning the motor imagery trials to their resting state trials, and can reduce the differences among subjects. It also defines a learning framework by combining weighted balanced distribution adaptation (W-BDA), source empirical risk, and manifold regularization to further reduce the variation between source and target domains. We validated the method on two BCI Competition IV datasets for motor imagery tasks. In the absence of labeled EEG trials of the target subject, compared with the excellent counterparts, the classification accuracy increases by 9.28% and 11.73%. After the alignment algorithm is added, the accuracy of the MFAR is improved by 9.36% and 4.17% on the basis. The experimental results show that our learning framework outperformed several state-of-the-art transfer learning algorithms. Even when the training data from the new user are sufficient, the proposed approach achieves good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qls完成签到,获得积分10
1秒前
caas6发布了新的文献求助30
1秒前
1秒前
子春二杦发布了新的文献求助10
2秒前
ertredffg发布了新的文献求助10
2秒前
samurai发布了新的文献求助10
3秒前
stan发布了新的文献求助10
3秒前
3秒前
3秒前
兴奋大马喽完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
4秒前
5秒前
XZM完成签到,获得积分10
5秒前
Lilian发布了新的文献求助10
5秒前
十戈橙发布了新的文献求助10
5秒前
6秒前
LeeXg完成签到,获得积分10
6秒前
7秒前
changping应助小橘采纳,获得30
7秒前
汤汤完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助啊哈哈哈采纳,获得10
8秒前
鱼生完成签到,获得积分10
8秒前
干净绮烟完成签到,获得积分10
8秒前
8秒前
852应助SunnyZjw采纳,获得10
8秒前
Minty完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
片刻窘境发布了新的文献求助10
9秒前
9秒前
wxyshare举报spring求助涉嫌违规
10秒前
10秒前
10秒前
10秒前
大气的杨完成签到 ,获得积分10
10秒前
11秒前
汤汤发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987