Multi-Source Fusion Domain Adaptation Using Resting-State Knowledge for Motor Imagery Classification Tasks

计算机科学 学习迁移 运动表象 人工智能 脑电图 正规化(语言学) 脑-机接口 域适应 模式识别(心理学) 机器学习 语音识别 心理学 分类器(UML) 精神科
作者
Lei Zhu,Junting Yang,Wangpan Ding,Jieping Zhu,Ping Xu,Nanjiao Ying,Jianhai Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21772-21781 被引量:11
标识
DOI:10.1109/jsen.2021.3101684
摘要

Transfer learning is the method that makes use of knowledge from other fields to solve problems in related fields. It has been shown that it can deal with the problem of insufficient labeled data for new users or new tasks in the brain-computer interface. Domain adaptation is one of the transfer learning methods which is widely used for its excellent performance. Here, the offline cross-subject EEG signal classification is mainly focused on. The unlabeled EEG trials of the new user are classified by using the EEG trials with labels from source subjects. In this paper, a novel transfer learning method called multi-source fusion adaptation regularization (MFAR) is proposed. MFAR preprocesses the EEG signal by aligning the motor imagery trials to their resting state trials, and can reduce the differences among subjects. It also defines a learning framework by combining weighted balanced distribution adaptation (W-BDA), source empirical risk, and manifold regularization to further reduce the variation between source and target domains. We validated the method on two BCI Competition IV datasets for motor imagery tasks. In the absence of labeled EEG trials of the target subject, compared with the excellent counterparts, the classification accuracy increases by 9.28% and 11.73%. After the alignment algorithm is added, the accuracy of the MFAR is improved by 9.36% and 4.17% on the basis. The experimental results show that our learning framework outperformed several state-of-the-art transfer learning algorithms. Even when the training data from the new user are sufficient, the proposed approach achieves good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助陶醉觅夏采纳,获得200
2秒前
憨鬼憨切发布了新的文献求助10
2秒前
2秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
4秒前
5秒前
6秒前
hh应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Eva完成签到,获得积分10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
清爽老九应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
greenPASS666发布了新的文献求助10
7秒前
涂欣桐应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
secbox完成签到,获得积分10
8秒前
刘哈哈发布了新的文献求助30
8秒前
xyzdmmm完成签到,获得积分10
9秒前
9秒前
欢呼冰岚发布了新的文献求助30
10秒前
xiongdi521发布了新的文献求助10
10秒前
honeybee完成签到,获得积分10
12秒前
兔子完成签到,获得积分10
13秒前
汉关发布了新的文献求助10
13秒前
NexusExplorer应助WZ0904采纳,获得10
14秒前
xiongdi521完成签到,获得积分10
15秒前
15秒前
ding应助奋斗的小林采纳,获得10
15秒前
超帅曼柔完成签到,获得积分10
15秒前
酷波er应助xg采纳,获得10
16秒前
听话的亦瑶完成签到,获得积分10
17秒前
龙江游侠完成签到,获得积分10
17秒前
小蘑菇应助honeybee采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849