量子点
材料科学
光电子学
兴奋剂
有机半导体
有机太阳能电池
纳米技术
能量转换效率
光伏系统
电气工程
聚合物
复合材料
工程类
作者
Weiqiang Miao,Chuanhang Guo,Donghui Li,Teng Li,Pang Wang,Yujie Yang,Dan Liu,Tao Wang
出处
期刊:Solar RRL
[Wiley]
日期:2021-08-18
卷期号:5 (10)
被引量:3
标识
DOI:10.1002/solr.202100499
摘要
Among the emerging photovoltaic technologies, organic and perovskite quantum dots (PQDs) solar cells have thrived on low‐cost processing and extraordinary optoelectronic properties. Herein, CsPbBr 3 PQDs are incorporated into PM6:Y6‐BO organic solar cell (OSC) to enhance device efficiency without scarifying the device stability. While the incorporation of PQDs has no impact on the molecular packing and phase separation of organic semiconductors, their presence enhances light absorption due to the Rayleigh scattering effect, promotes exciton dissociation in the Y6‐BO phase, and forms an efficient hole transfer pathway from Y6‐BO to PQDs and then to PM6 to improve hole transport. These contribute to increased short‐circuit current density ( J SC ) and fill factor (FF) of OSCs with constant V OC . With the presence of 1 wt% CsPbBr 3 PQDs doping, the highest power conversion efficiency (PCE) of the corresponding PM6:Y6‐BO OSC is improved from 16.4% to 17.1%, where the device stability has not been affected due to the better phase stability of CsPbBr 3 PQDs than CsPbI 3 PQDs. This work unravels a new approach to enhance the efficiency of OSCs by applying PQDs doping to manipulate the photon‐to‐electricity conversion process.
科研通智能强力驱动
Strongly Powered by AbleSci AI