亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis

主成分分析 最大化 熵(时间箭头) 计算机科学 故障检测与隔离 模式识别(心理学) 振动 人工智能 工程类 控制理论(社会学) 数学 数学优化 执行机构 量子力学 物理 控制(管理)
作者
Govind Vashishtha,Rajesh Kumar
出处
期刊:Journal of vibration engineering & technologies [Springer Science+Business Media]
卷期号:10 (1): 335-349 被引量:30
标识
DOI:10.1007/s42417-021-00379-7
摘要

BackgroundPelton wheel works on Newton's law which converts the kinetic energy of fluid into mechanical energy. Bearing, nozzle, servomotor and buckets are the main components of the Pelton wheel that are prone to defects. Corrosion by reactive materials, degradation by strong slurry particles, the involvement of some metallurgical defects, cavitation, and poor bearing lubrication are some of the causes which induce defects in the Pelton wheel. These failures result in significant turbine disruption, costly disassembly, and, in some cases, full Pelton wheel shutdown. Hence, it becomes a necessity to monitor the Pelton wheel through some suitable methods.PurposeA novel artificial intelligence-based method has been investigated to describe the health condition of a Pelton wheel. Traditionally, extracted features from stationary wavelet transform (SWT) decomposed signal to increase the complexity and affect the classification accuracy. This issue is resolved by developing a new fault diagnosis scheme using improved Shannon entropy based on expectation maximization principal component analysis (EM-PCA) and extreme learning machine (ELM).MethodsIn the proposed scheme, F-score is initially applied to select features and construct the feature matrix. At the same time, EM-PCA is used to reduce the dimension of the constructed feature matrix, which reduces the correlation between data and eliminate the redundancy to retain the essential features for the ELM classification model.ConclusionThe effectiveness of the proposed scheme is compared with other reduction techniques used for the purpose. A comparison has also been made with other classification methods. The results show that EM-PCA with improved Shannon entropy can effectively eliminate correlation and redundancy of data. Further, the use of the ELM can take on better adaptability, faster computation speed and higher classification rate. The proposed method is fast as it takes 0.0020 s of computation time for both training and testing with 89.14% and 96.33% training and testing accuracies, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
32秒前
GGBond完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
1分钟前
夜守发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
福娃完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
夜守完成签到,获得积分10
1分钟前
yanxueyi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
身法马可波罗完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yuky完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
镜中花完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
从容幼南完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743819
捐赠科研通 2931744
什么是DOI,文献DOI怎么找? 1605190
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734465