Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis

主成分分析 最大化 熵(时间箭头) 计算机科学 故障检测与隔离 模式识别(心理学) 振动 人工智能 工程类 控制理论(社会学) 数学 数学优化 执行机构 量子力学 物理 控制(管理)
作者
Govind Vashishtha,Rajesh Kumar
出处
期刊:Journal of vibration engineering & technologies [Springer Science+Business Media]
卷期号:10 (1): 335-349 被引量:30
标识
DOI:10.1007/s42417-021-00379-7
摘要

BackgroundPelton wheel works on Newton's law which converts the kinetic energy of fluid into mechanical energy. Bearing, nozzle, servomotor and buckets are the main components of the Pelton wheel that are prone to defects. Corrosion by reactive materials, degradation by strong slurry particles, the involvement of some metallurgical defects, cavitation, and poor bearing lubrication are some of the causes which induce defects in the Pelton wheel. These failures result in significant turbine disruption, costly disassembly, and, in some cases, full Pelton wheel shutdown. Hence, it becomes a necessity to monitor the Pelton wheel through some suitable methods.PurposeA novel artificial intelligence-based method has been investigated to describe the health condition of a Pelton wheel. Traditionally, extracted features from stationary wavelet transform (SWT) decomposed signal to increase the complexity and affect the classification accuracy. This issue is resolved by developing a new fault diagnosis scheme using improved Shannon entropy based on expectation maximization principal component analysis (EM-PCA) and extreme learning machine (ELM).MethodsIn the proposed scheme, F-score is initially applied to select features and construct the feature matrix. At the same time, EM-PCA is used to reduce the dimension of the constructed feature matrix, which reduces the correlation between data and eliminate the redundancy to retain the essential features for the ELM classification model.ConclusionThe effectiveness of the proposed scheme is compared with other reduction techniques used for the purpose. A comparison has also been made with other classification methods. The results show that EM-PCA with improved Shannon entropy can effectively eliminate correlation and redundancy of data. Further, the use of the ELM can take on better adaptability, faster computation speed and higher classification rate. The proposed method is fast as it takes 0.0020 s of computation time for both training and testing with 89.14% and 96.33% training and testing accuracies, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡完成签到,获得积分10
刚刚
xixi发布了新的文献求助10
刚刚
脑洞疼应助李依伊采纳,获得10
刚刚
Natua发布了新的文献求助10
1秒前
奔波霸完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
朵朵完成签到,获得积分10
3秒前
hcw完成签到,获得积分20
3秒前
cureall完成签到,获得积分10
5秒前
赘婿应助啃猫爪采纳,获得30
5秒前
5秒前
小白发布了新的文献求助10
6秒前
6秒前
jjj发布了新的文献求助10
6秒前
wy.he应助曾志伟采纳,获得20
6秒前
WYang发布了新的文献求助10
6秒前
ccccccp发布了新的文献求助10
6秒前
6秒前
华道之发布了新的文献求助10
6秒前
Owen应助颜好采纳,获得10
6秒前
Knight完成签到,获得积分10
7秒前
fangfangfang完成签到,获得积分10
7秒前
8秒前
眯眯眼的士萧完成签到 ,获得积分10
8秒前
fgjkl完成签到 ,获得积分10
9秒前
Lucas应助MingY采纳,获得10
9秒前
王桂元完成签到,获得积分10
9秒前
KanmenRider完成签到,获得积分10
9秒前
勤奋向真发布了新的文献求助10
9秒前
10秒前
蓝兰发布了新的文献求助10
10秒前
10秒前
11秒前
Rimbaud完成签到 ,获得积分10
11秒前
11111发布了新的文献求助10
11秒前
Saw完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594