Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis

主成分分析 最大化 熵(时间箭头) 计算机科学 故障检测与隔离 模式识别(心理学) 振动 人工智能 工程类 控制理论(社会学) 数学 数学优化 执行机构 量子力学 物理 控制(管理)
作者
Govind Vashishtha,Rajesh Kumar
出处
期刊:Journal of vibration engineering & technologies [Springer Nature]
卷期号:10 (1): 335-349 被引量:30
标识
DOI:10.1007/s42417-021-00379-7
摘要

BackgroundPelton wheel works on Newton's law which converts the kinetic energy of fluid into mechanical energy. Bearing, nozzle, servomotor and buckets are the main components of the Pelton wheel that are prone to defects. Corrosion by reactive materials, degradation by strong slurry particles, the involvement of some metallurgical defects, cavitation, and poor bearing lubrication are some of the causes which induce defects in the Pelton wheel. These failures result in significant turbine disruption, costly disassembly, and, in some cases, full Pelton wheel shutdown. Hence, it becomes a necessity to monitor the Pelton wheel through some suitable methods.PurposeA novel artificial intelligence-based method has been investigated to describe the health condition of a Pelton wheel. Traditionally, extracted features from stationary wavelet transform (SWT) decomposed signal to increase the complexity and affect the classification accuracy. This issue is resolved by developing a new fault diagnosis scheme using improved Shannon entropy based on expectation maximization principal component analysis (EM-PCA) and extreme learning machine (ELM).MethodsIn the proposed scheme, F-score is initially applied to select features and construct the feature matrix. At the same time, EM-PCA is used to reduce the dimension of the constructed feature matrix, which reduces the correlation between data and eliminate the redundancy to retain the essential features for the ELM classification model.ConclusionThe effectiveness of the proposed scheme is compared with other reduction techniques used for the purpose. A comparison has also been made with other classification methods. The results show that EM-PCA with improved Shannon entropy can effectively eliminate correlation and redundancy of data. Further, the use of the ELM can take on better adaptability, faster computation speed and higher classification rate. The proposed method is fast as it takes 0.0020 s of computation time for both training and testing with 89.14% and 96.33% training and testing accuracies, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
打打应助日天的马铃薯采纳,获得10
2秒前
我就是我完成签到,获得积分10
2秒前
橙子发布了新的文献求助10
3秒前
3秒前
ding应助kuny采纳,获得10
3秒前
烟花应助skbz采纳,获得10
4秒前
王木木发布了新的文献求助10
4秒前
楼迎荷发布了新的文献求助10
6秒前
6秒前
lilithnox发布了新的文献求助30
6秒前
7秒前
7秒前
SciGPT应助hao采纳,获得10
8秒前
lzx关闭了lzx文献求助
8秒前
文献发布了新的文献求助10
8秒前
快乐小豚鼠完成签到,获得积分10
8秒前
9秒前
忽忽完成签到,获得积分10
9秒前
王木木完成签到,获得积分10
9秒前
11秒前
柚子茶完成签到 ,获得积分10
11秒前
12秒前
13秒前
stop here发布了新的文献求助10
14秒前
15秒前
damn发布了新的文献求助10
16秒前
16秒前
洁净百川完成签到 ,获得积分10
17秒前
17秒前
akkk626完成签到 ,获得积分10
17秒前
张老师发布了新的文献求助10
17秒前
19秒前
kuny发布了新的文献求助10
19秒前
lilithnox完成签到,获得积分10
19秒前
研友_VZG7GZ应助楼迎荷采纳,获得10
20秒前
20秒前
李健应助特大包包采纳,获得10
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458