再生(生物学)
材料科学
癌症治疗
癌症
陶瓷
生物医学工程
医学
癌症研究
纳米技术
复合材料
生物
细胞生物学
内科学
作者
Wen Niu,Mi Chen,Yi Guo,Min Wang,Meng Luo,Wei Cheng,Yidan Wang,Bo Lei
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-09-07
卷期号:15 (9): 14323-14337
被引量:60
标识
DOI:10.1021/acsnano.1c03214
摘要
The production of reactive oxygen species, persistent inflammation, bacterial infection, and recurrence after a tumor resection has become the main challenge in cancer therapy and post-surgical skin regeneration. Herein, we report a multifunctional branched bioactive Si-Ca-P-Mo glass-ceramic nanoparticle (BBGN) with inlaid molybdate nanocrystals for an effective post-surgical melanoma therapy or infection therapy and defected skin reconstruction. Mixed-valence molybdenum (Mo4+ and Mo6+) doped BBGN (BBGN-Mo) was first synthesized via a hydrothermally assisted classical synthesis of BGN, which enables the structure with a lot of free electrons and oxygen vacancies. The BBGN-Mo exhibits excellent photothermal, antibacterial, enzyme-like radical scavenging, and anti-inflammatory as well as promoted vascularized efficiencies. BBGN-Mo could kill drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) bacteria in vitro (99.5%) and in vivo (97.0%) at a low photothermal temperature (42 °C) and efficiently enhance the MRSA-infected wound repair. Additionally, BBGN-Mo could effectively inhibit tumor recurrence (96.4%), continuously improve the wound anti-inflammation and vascularization microenvironment, and significantly promote the post-surgical skin regeneration. This work suggests that conventional bioceramics could be turned to the highly efficient nanodrug for treating the challenge of post-surgical cancer therapy or infection therapy and tissue regeneration, through the mixed-valence strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI