亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
郭悦聪发布了新的文献求助10
6秒前
10秒前
15秒前
在水一方应助畅快的涵蕾采纳,获得10
23秒前
nnnick完成签到,获得积分0
35秒前
38秒前
38秒前
友好刺猬发布了新的文献求助10
57秒前
在水一方应助zhanyuji采纳,获得10
1分钟前
大笨鹅之家完成签到 ,获得积分10
1分钟前
1分钟前
zhanyuji发布了新的文献求助10
1分钟前
1分钟前
所所应助虞美人采纳,获得10
1分钟前
1分钟前
东方烨伟发布了新的文献求助10
1分钟前
yinlao完成签到,获得积分10
1分钟前
gg完成签到,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
bing发布了新的文献求助10
1分钟前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
1分钟前
1分钟前
阔达凝天完成签到 ,获得积分10
1分钟前
天真彩虹完成签到 ,获得积分10
1分钟前
东方烨伟完成签到,获得积分10
1分钟前
张杠杠完成签到 ,获得积分10
1分钟前
pegasus0802完成签到 ,获得积分10
1分钟前
2分钟前
Ciil完成签到,获得积分10
2分钟前
虞美人发布了新的文献求助10
2分钟前
2分钟前
友好刺猬完成签到,获得积分10
2分钟前
默默白桃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得30
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968325
求助须知:如何正确求助?哪些是违规求助? 3513238
关于积分的说明 11166853
捐赠科研通 3248498
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874964
科研通“疑难数据库(出版商)”最低求助积分说明 804629