亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
天天快乐应助SSY采纳,获得10
5秒前
6秒前
shinn发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
小波完成签到 ,获得积分10
15秒前
可爱的函函应助shinn采纳,获得10
16秒前
Dr_Zeyu发布了新的文献求助10
20秒前
大气山柏发布了新的文献求助30
24秒前
zpli完成签到 ,获得积分10
25秒前
28秒前
Soey完成签到,获得积分10
33秒前
shinn发布了新的文献求助10
34秒前
寒冷听枫完成签到,获得积分20
35秒前
37秒前
大气山柏完成签到,获得积分10
39秒前
无极微光应助一切顺利采纳,获得20
42秒前
42秒前
寒冷听枫发布了新的文献求助10
42秒前
xingxing完成签到,获得积分10
45秒前
奥沙利楠完成签到,获得积分10
47秒前
鱿鱼先生完成签到,获得积分10
51秒前
李话完成签到,获得积分10
51秒前
田様应助48da采纳,获得10
53秒前
寻道图强应助ecnu搬砖人采纳,获得50
53秒前
dxdxd完成签到,获得积分10
57秒前
脑洞疼应助李联洪采纳,获得10
58秒前
隐形曼青应助shinn采纳,获得10
1分钟前
小马甲应助宇宙超人007008采纳,获得10
1分钟前
一只大嵩鼠完成签到 ,获得积分10
1分钟前
杨远杰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
江江江发布了新的文献求助10
1分钟前
1分钟前
Emma完成签到 ,获得积分10
1分钟前
shinn发布了新的文献求助10
1分钟前
dxdxd发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772347
求助须知:如何正确求助?哪些是违规求助? 5597618
关于积分的说明 15429486
捐赠科研通 4905352
什么是DOI,文献DOI怎么找? 2639330
邀请新用户注册赠送积分活动 1587278
关于科研通互助平台的介绍 1542120