Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助大方的凌波采纳,获得10
刚刚
刚刚
刚刚
1秒前
氨基酸完成签到,获得积分20
1秒前
wanci应助多多洛采纳,获得10
1秒前
量子星尘发布了新的文献求助200
2秒前
朱建强发布了新的文献求助10
2秒前
普通市民完成签到 ,获得积分10
2秒前
3秒前
解语花应助yyyhhh采纳,获得30
3秒前
Ww发布了新的文献求助10
3秒前
个性的紫菜应助zwy109采纳,获得10
4秒前
小二郎应助听风采纳,获得10
4秒前
所所应助坚定惜梦采纳,获得10
5秒前
充电宝应助NXZ采纳,获得10
5秒前
wangqinlei完成签到 ,获得积分10
5秒前
涵寒晗菡发布了新的文献求助10
5秒前
5秒前
英姑应助氨基酸采纳,获得10
6秒前
6秒前
白白完成签到,获得积分10
6秒前
木子发布了新的文献求助10
7秒前
7秒前
登山香菇完成签到,获得积分10
7秒前
8秒前
爆米花应助小文子采纳,获得10
8秒前
jimmy完成签到,获得积分10
8秒前
8秒前
油饼完成签到,获得积分10
9秒前
典雅的俊驰应助WNL采纳,获得10
9秒前
科研通AI2S应助yyyhhh采纳,获得30
9秒前
魁梧的曼易完成签到,获得积分10
10秒前
深情安青应助朱建强采纳,获得10
11秒前
小小蟋蟀发布了新的文献求助50
11秒前
11秒前
11秒前
12秒前
CodeCraft应助Ww采纳,获得10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559