Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song24517发布了新的文献求助20
刚刚
顺利琦完成签到,获得积分10
1秒前
李子发布了新的文献求助10
1秒前
pbf完成签到,获得积分10
1秒前
1秒前
lyn发布了新的文献求助30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Twikky完成签到,获得积分10
1秒前
柚子皮应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Akim应助夏末采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
迟大猫应助想学习采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
期刊应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
最卷的卷心菜完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得50
3秒前
田様应助科研通管家采纳,获得100
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
yun尘世应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
知性的映之完成签到,获得积分10
4秒前
4秒前
小蘑菇应助圈圈采纳,获得10
4秒前
万能图书馆应助七块采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678