Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助勿忘心安采纳,获得10
刚刚
梦二完成签到,获得积分10
刚刚
Water完成签到 ,获得积分10
1秒前
aertom完成签到,获得积分10
1秒前
周周发布了新的文献求助10
1秒前
2秒前
2秒前
li完成签到,获得积分10
2秒前
Clarence0320发布了新的文献求助30
4秒前
Leone完成签到,获得积分10
4秒前
烟花应助12采纳,获得10
4秒前
kangkang完成签到,获得积分10
5秒前
可爱的函函应助vivien采纳,获得10
5秒前
昏睡的书双关注了科研通微信公众号
5秒前
明石塘小王完成签到,获得积分10
5秒前
6秒前
Ashely完成签到 ,获得积分10
6秒前
今后应助caigou采纳,获得10
6秒前
Owen应助顾守采纳,获得10
7秒前
莫默完成签到,获得积分10
7秒前
研友_8Wzm5Z发布了新的文献求助10
7秒前
羊羽完成签到,获得积分10
7秒前
刘长绪发布了新的文献求助10
7秒前
8秒前
李健的小迷弟应助彭彭采纳,获得10
8秒前
万里发布了新的文献求助10
9秒前
9秒前
11秒前
sadtango12发布了新的文献求助10
11秒前
充电宝应助阿宝采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得20
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
元谷雪应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454