Improved lymph node metastasis prediction from preoperative esophageal squamous cell cancer CT by graph attention convolutional neural network (GACNN).

医学 食管癌 食管鳞状细胞癌 淋巴结 转移 放射科 核医学 癌症 内科学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Yiyue Xu,Bin Fan,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:39 (15_suppl): e16093-e16093
标识
DOI:10.1200/jco.2021.39.15_suppl.e16093
摘要

e16093 Background: Lymph node (LN) metastasis is the most important factor for decision making in esophageal squamous cell carcinoma (ESCC). A more accurate prediction model for LN metastatic status in ESCC patients is needed. Methods: In this retrospective study, 397 ESCC patients who took Contrast-Enhanced CT (CECT) within 15 days before surgery between October 2013 and November 2018 were collected. There are 924 (798 negative and 126 positive) LNs with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 663) and validation set (n = 185). Data augmentation including shifting and rotation was performed in the training set, resulting in 1326 negative and 1140 positive LN samples. The GACNN model was trained over CT volumetric patches centred at manually segmented LN samples. GACNN was composed of a 3D UNet encoder to extract deep features, and a graph attention layer to integrate morphological features extracted from segmented LN. The model was validated using the validation set (135 negative and 50 positive) and measured by area under ROC curve (auc), sensitivity (sen), and specificity (spe). Results: GACNN achieved better auc, sen, and spe of 0.802, 0.765, and 0.826, when compared to 3 other models including CT radiomics model (auc 0.733, sen 0.689, spe 0.765), 3D UNet encoder (auc 0.778, sen 0.722, spe 0.767), and our model without morphological features (auc 0.796, sen 0.754, spe 0.803). The improvement was statistically significant (p < 0.001). Conclusions: Our prediction model improved the prediction of LN metastasis, which has the potential to assist LN metastasis risk evaluation and personalized treatment planning in ESCC patients for surgery or radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
wildeager完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助自然安雁采纳,获得10
4秒前
木子完成签到,获得积分10
4秒前
姚姚完成签到,获得积分20
5秒前
6秒前
AAAaa发布了新的文献求助10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助niuniujia采纳,获得10
8秒前
dz发布了新的文献求助10
8秒前
浮游应助mmyhn采纳,获得10
9秒前
李爱国应助YQT采纳,获得30
9秒前
Yonina发布了新的文献求助10
10秒前
负责丹亦完成签到,获得积分10
10秒前
iebix发布了新的文献求助20
11秒前
猪头发布了新的文献求助10
12秒前
12秒前
科目三应助大聪明采纳,获得10
13秒前
14秒前
14秒前
yk完成签到,获得积分10
14秒前
15秒前
15秒前
没有你沉完成签到,获得积分20
16秒前
小欣完成签到,获得积分10
17秒前
水滴发布了新的文献求助10
17秒前
NexusExplorer应助零九二一采纳,获得10
18秒前
19秒前
zhangweiji发布了新的文献求助10
19秒前
爱吃冻梨完成签到,获得积分10
20秒前
浮游应助没有你沉采纳,获得10
20秒前
健忘曼彤发布了新的文献求助10
20秒前
善学以致用应助路瑶瑶采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Nonthermal Processing Technologies for Food 800
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4987839
求助须知:如何正确求助?哪些是违规求助? 4237472
关于积分的说明 13199138
捐赠科研通 4031234
什么是DOI,文献DOI怎么找? 2205379
邀请新用户注册赠送积分活动 1216944
关于科研通互助平台的介绍 1134978