环境科学
一氧化二氮
亚硝酸
大气科学
焊剂(冶金)
作者
Katie Tuite,Jennie L. Thomas,P. R. Veres,J. M. Roberts,P. S. Stevens,Stephen M. Griffith,Sébastien Dusanter,James Flynn,Shaddy Ahmed,L. K. Emmons,Si‐Wan Kim,R. A. Washenfelder,Cora J. Young,Catalina Tsai,O. Pikelnaya,J. Stutz
摘要
Abstract Nitrous acid (HONO) is an important radical precursor that can impact secondary pollutant levels, especially in urban environments. Due to uncertainties in its heterogeneous formation mechanisms, models often under predict HONO concentrations. A number of heterogeneous sources at the ground have been proposed but there is no consensus about which play a significant role in the urban boundary layer. We present a new one‐dimensional chemistry and transport model which performs surface chemistry based on molecular collisions and chemical conversion, allowing us to add detailed HONO formation chemistry at the ground. We conducted model runs for the 2010 CalNex campaign, finding good agreement with observations for key species such as O 3 , NO x , and HO x . With the ground sources implemented, the model captures the diurnal and vertical profile of the HONO observations. Primary HO x production from HONO photolysis is 2–3 times more important than O 3 or HCHO photolysis at mid‐day, below 10 m. The HONO concentration, and its contribution to HO x , decreases quickly with altitude. Heterogeneous chemistry at the ground provided a HONO source of 2.5 × 10 11 molecules cm −2 s −1 during the day and 5 × 10 10 molecules cm −2 s −1 at night. The night time source was dominated by NO 2 hydrolysis. During the day, photolysis of surface HNO 3 /nitrate contributed 45%–60% and photo‐enhanced conversion of NO 2 contributed 20%–45%. Sensitivity studies addressing the uncertainties in both photolytic mechanisms show that, while the relative contribution of either source can vary, HNO 3 /nitrate is required to produce a surface HONO source that is strong enough to explain observations.
科研通智能强力驱动
Strongly Powered by AbleSci AI