避障
最大值和最小值
运动规划
障碍物
势场
路径(计算)
力场(虚构)
重力场
计算机科学
领域(数学)
避碰
功能(生物学)
控制理论(社会学)
数学优化
算法
人工智能
数学
物理
机器人
移动机器人
经典力学
碰撞
控制(管理)
生物
纯数学
法学
程序设计语言
数学分析
进化生物学
计算机安全
政治学
地球物理学
作者
Qi BinKai,Mingqiu Li,Yang Yang,Xiyang Wang
出处
期刊:Journal of physics
[IOP Publishing]
日期:2021-06-01
卷期号:1948 (1): 012060-012060
被引量:8
标识
DOI:10.1088/1742-6596/1948/1/012060
摘要
Abstract In this paper, we study the path planning obstacle avoidance problem of UAV based on improved artificial potential field method (APF). By introducing dynamic adjustment coefficients, the gravitational force and repulsive force functions in the traditional APF are improved to make the obstacle avoidance safety factor higher and the final path smoother; for the target unreachability problem, a new attractive potential field is built in the gravitational force function to balance the changes of the traditional attractive force and repulsive force; a longitudinal random factor is used to solve the problem of getting into local minima. Through simulation comparison with other methods, this method can solve the path planning obstacle avoidance problem of UAV more efficiently.
科研通智能强力驱动
Strongly Powered by AbleSci AI