K-means based RANSAC Algorithm for ICP Registration of 3D Point Cloud with Dense Outliers

作者
Chao-Chung Peng
出处
期刊:International Conference on Consumer Electronics 被引量:1
标识
DOI:10.1109/icce-tw52618.2021.9603053
摘要

In this work, a strategy for the 3D point cloud registration in the presence of multiple groups of outliers is addressed. Regarding to the point cloud registration, the iterative closed point (ICP) is a frequently used algorithm. Many related works have pointed out that robust point cloud matching can be achieved by using correspondence weight design or some other feature extraction techniques. However, it is interesting that whether it is possible to use traditional point-to-point ICP to deal with the point cloud registration in the presence of dense outlier clusters even without the aid of ICP weight design or point cloud feature extraction. To solve this question, a K-means based random sample consensus (RANSAC) strategy is presented. For a given data point clouds with high dense outliers, the K-means is firstly applied to cluster the point clouds. After that, the registration process cooperates with RANSAC's random cluster sampling for ICP matching, and calculates the sample with the highest matching score as the best candidate for point cloud matching. Here, we name this procedure as K-means based RANSAC ICP (KR-ICP). Through this point cloud registration strategy, the influence of multiple clusters of dense outliers on ICP registration can be avoided. Finally, this study verified the feasibility of this strategy via simulations. The proposed scheme can be extended to the related applications of point cloud initial pose alignment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤秋柳完成签到,获得积分10
刚刚
刚刚
好好发布了新的文献求助10
1秒前
1秒前
夜三里关注了科研通微信公众号
1秒前
北极星发布了新的文献求助10
1秒前
zzj135291发布了新的文献求助10
1秒前
2秒前
沙漠水手发布了新的文献求助10
2秒前
结构女王发布了新的文献求助10
2秒前
mmzz完成签到,获得积分10
2秒前
2秒前
zhang发布了新的文献求助100
2秒前
落雁沙发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
传奇3应助洋芋土豆丝采纳,获得10
3秒前
4秒前
hxy完成签到,获得积分10
4秒前
识得故人发布了新的文献求助10
4秒前
S_pingan发布了新的文献求助10
5秒前
5秒前
陈晓迪1992发布了新的文献求助10
5秒前
6秒前
6秒前
张惠兰完成签到,获得积分10
6秒前
karmenda发布了新的文献求助10
6秒前
叶文洁发布了新的文献求助10
7秒前
Redamancy关注了科研通微信公众号
7秒前
清秀千兰发布了新的文献求助10
7秒前
7秒前
7秒前
茸茸茸发布了新的文献求助10
8秒前
8秒前
絵空事完成签到,获得积分10
8秒前
大模型应助辛勤秋柳采纳,获得10
9秒前
好好完成签到,获得积分20
9秒前
宝哥发布了新的文献求助10
10秒前
小新应助123lura采纳,获得10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170