K-means based RANSAC Algorithm for ICP Registration of 3D Point Cloud with Dense Outliers

作者
Chao-Chung Peng
出处
期刊:International Conference on Consumer Electronics 被引量:1
标识
DOI:10.1109/icce-tw52618.2021.9603053
摘要

In this work, a strategy for the 3D point cloud registration in the presence of multiple groups of outliers is addressed. Regarding to the point cloud registration, the iterative closed point (ICP) is a frequently used algorithm. Many related works have pointed out that robust point cloud matching can be achieved by using correspondence weight design or some other feature extraction techniques. However, it is interesting that whether it is possible to use traditional point-to-point ICP to deal with the point cloud registration in the presence of dense outlier clusters even without the aid of ICP weight design or point cloud feature extraction. To solve this question, a K-means based random sample consensus (RANSAC) strategy is presented. For a given data point clouds with high dense outliers, the K-means is firstly applied to cluster the point clouds. After that, the registration process cooperates with RANSAC's random cluster sampling for ICP matching, and calculates the sample with the highest matching score as the best candidate for point cloud matching. Here, we name this procedure as K-means based RANSAC ICP (KR-ICP). Through this point cloud registration strategy, the influence of multiple clusters of dense outliers on ICP registration can be avoided. Finally, this study verified the feasibility of this strategy via simulations. The proposed scheme can be extended to the related applications of point cloud initial pose alignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮熊猫完成签到,获得积分10
1秒前
显隐发布了新的文献求助10
2秒前
sskaze完成签到 ,获得积分10
2秒前
显隐发布了新的文献求助10
2秒前
3秒前
苦瓜发布了新的文献求助10
4秒前
5秒前
Akim应助小远采纳,获得10
6秒前
拼搏起眸发布了新的文献求助20
7秒前
超级忆雪发布了新的文献求助10
8秒前
9秒前
培a发布了新的文献求助10
9秒前
qweqwe完成签到,获得积分10
9秒前
Lucas应助zzxx采纳,获得10
9秒前
9秒前
Zac完成签到,获得积分10
10秒前
pearer完成签到,获得积分10
11秒前
思源应助清脆的圆子采纳,获得10
11秒前
FashionBoy应助zhangzhang采纳,获得10
12秒前
12秒前
12秒前
冷静的伊完成签到,获得积分10
13秒前
又来注水了完成签到,获得积分10
13秒前
13秒前
允期发布了新的文献求助10
13秒前
Joyce完成签到,获得积分10
16秒前
Augety完成签到,获得积分10
16秒前
Sylvia完成签到,获得积分10
16秒前
王文杰发布了新的文献求助10
16秒前
panpan完成签到,获得积分10
18秒前
npicco发布了新的文献求助10
18秒前
英姑应助叶95采纳,获得10
19秒前
19秒前
超级忆雪完成签到,获得积分10
20秒前
魏少爷发布了新的文献求助10
21秒前
冷静的雅山完成签到 ,获得积分10
22秒前
塔莉娅完成签到,获得积分10
22秒前
嘎嘎乐儿完成签到,获得积分10
23秒前
大溺发布了新的文献求助10
24秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232