K-means based RANSAC Algorithm for ICP Registration of 3D Point Cloud with Dense Outliers

作者
Chao-Chung Peng
出处
期刊:International Conference on Consumer Electronics 被引量:1
标识
DOI:10.1109/icce-tw52618.2021.9603053
摘要

In this work, a strategy for the 3D point cloud registration in the presence of multiple groups of outliers is addressed. Regarding to the point cloud registration, the iterative closed point (ICP) is a frequently used algorithm. Many related works have pointed out that robust point cloud matching can be achieved by using correspondence weight design or some other feature extraction techniques. However, it is interesting that whether it is possible to use traditional point-to-point ICP to deal with the point cloud registration in the presence of dense outlier clusters even without the aid of ICP weight design or point cloud feature extraction. To solve this question, a K-means based random sample consensus (RANSAC) strategy is presented. For a given data point clouds with high dense outliers, the K-means is firstly applied to cluster the point clouds. After that, the registration process cooperates with RANSAC's random cluster sampling for ICP matching, and calculates the sample with the highest matching score as the best candidate for point cloud matching. Here, we name this procedure as K-means based RANSAC ICP (KR-ICP). Through this point cloud registration strategy, the influence of multiple clusters of dense outliers on ICP registration can be avoided. Finally, this study verified the feasibility of this strategy via simulations. The proposed scheme can be extended to the related applications of point cloud initial pose alignment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cherrymoon3发布了新的文献求助10
1秒前
1秒前
科研通AI6.1应助马dc采纳,获得10
1秒前
1秒前
xwj完成签到,获得积分10
3秒前
4秒前
怡然缘分发布了新的文献求助10
4秒前
qikkk应助blyqoqo采纳,获得10
5秒前
虚幻白玉发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
科研通AI6.1应助liu22132采纳,获得10
8秒前
8秒前
8秒前
Jasper应助uncle采纳,获得10
8秒前
8秒前
9秒前
9秒前
GGZ完成签到,获得积分10
9秒前
多多发布了新的文献求助30
10秒前
憨憨完成签到,获得积分20
10秒前
11秒前
健忘的蓉完成签到 ,获得积分10
11秒前
cshuijun完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
喃喃发布了新的文献求助10
13秒前
13秒前
弹指一挥间完成签到,获得积分10
13秒前
碧蓝丹烟发布了新的文献求助10
13秒前
wanci应助咖啡不加糖采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
qian发布了新的文献求助10
14秒前
ccamellia完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082