Nitric acid-assisted growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO2 conversion

质子化 光催化 纳米片 光化学 氧气 材料科学 化学工程 异质结 吸附 纳米技术 化学 催化作用 光电子学 物理化学 有机化学 工程类 离子
作者
Li Wang,Deli Chen,Shuqi Miao,Chen Fang,Changfa Guo,Pengcheng Ye,Jiqiang Ning,Yijun Zhong,Yong Hu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:434: 133867-133867 被引量:34
标识
DOI:10.1016/j.cej.2021.133867
摘要

Engineering bulk defects and surface modifications are effective strategies to facilitate carriers separation and achieve high-efficiency photocatalysis, but it is challenging to realize the integrated regulation of the two aspects. Herein, we report an S-scheme heterojunction with tunable oxygen vacancies (Vo) via in-situ growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets (p-C3N4/InVO4) assisted by nitric acid for efficient CO2 photoreduction. The nitric acid plays three roles in the synthetic process: providing protonation sources for the p-C3N4, assisting the growth of InVO4 nanobelts on p-C3N4, and facilitating the formation of Vo in InVO4. Intriguingly, the Vo content is tuned by varying the amount of C3N4 which reduces free H+ concentration and increases the electron density around V in VO43-, leading to a tade-off effect on Vo formation and thus a volcano-shaped evolution profile of Vo content. The introduction of Vo reduces the band gap of InVO4 and enhances the n-type conductivity, expediting the interfacial charge transfer in terms of the S-scheme pathway. Besides, the protonation of C3N4 improves electrical conductivity, promotes the adsorption and activation of CO2 molecules, and thermodynamically favours the conversion to CO. Due to the composite effect of Vo and protonation in the S-scheme system, the optimized p-C3N4/InVO4 hetero-nanosheet displays dramatically boosted photocatalytic CO2 reduction activity with a CO production rate of 14.05 μmol g-1 h−1, 6.03 and 3.23 times higher than that of bare InVO4 and p-C3N4, respectively. This work provides new platforms for the development of efficient photocatalysts by integrated refining of structure defects and surface modification in constructing heterostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐乐乐乐完成签到,获得积分10
刚刚
Q.curiosity完成签到,获得积分10
1秒前
丘比特应助我行我素采纳,获得10
1秒前
ClaudiaCY完成签到,获得积分10
1秒前
1秒前
科研天才完成签到,获得积分10
2秒前
GHOST发布了新的文献求助10
2秒前
2秒前
3秒前
谢家宝树发布了新的文献求助10
3秒前
HEIKU应助Ying采纳,获得10
4秒前
Zzz完成签到,获得积分10
4秒前
LC发布了新的文献求助20
4秒前
刘怀蕊完成签到,获得积分10
5秒前
5秒前
LLL发布了新的文献求助10
5秒前
跳跃乘风完成签到,获得积分10
6秒前
Anxinxin完成签到,获得积分10
6秒前
阳佟冬卉完成签到,获得积分10
7秒前
Silence发布了新的文献求助10
7秒前
7秒前
通通通发布了新的文献求助10
8秒前
帅气的秘密完成签到 ,获得积分10
8秒前
领导范儿应助马建国采纳,获得10
8秒前
lysixsixsix完成签到,获得积分10
8秒前
9秒前
jia完成签到,获得积分10
9秒前
欣喜乐天发布了新的文献求助10
9秒前
Kiyotaka完成签到,获得积分10
9秒前
10秒前
季夏发布了新的文献求助10
10秒前
Tingshan发布了新的文献求助20
11秒前
背后的诺言完成签到 ,获得积分20
11秒前
GHOST完成签到,获得积分20
12秒前
12秒前
勤奋的蜗牛完成签到,获得积分20
12秒前
omo发布了新的文献求助10
12秒前
Akim应助糊糊采纳,获得10
13秒前
Zn应助dsjlove采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762