Oxygen reduction reaction, which proceeds at the cathode of a fuel cell, is primarily important as its rate determines the overall performance of the device. However, designing a single-phase material that meets multiple standards (e.g., high activity, stability, thermomechanical characteristics) at once to become an ideal cathode still remains a great challenge. In this regard, the use of multi-phase catalysts, especially those with nanoscale complex domains, may serve as a rational strategy. Here we present Ba0.5Sr0.5Co0.6Fe0.2Zr0.1Y0.1O3-δ (BSCFZY) as a superior biphasic nano-composite cathode, which self-assembles into two discrete cubic perovskites: Co-rich (Ba0.5Sr0.5Co0.7Fe0.2Zr0.07Y0.03O3-δ) and Zr-rich (Ba0.6Sr0.4Co0.3Fe0.2Zr0.4Y0.1O3-δ) phases. The former promotes the electrocatalytic activity while the latter supports the microstructural robustness; thus, the synergic ensemble of Co- and Zr-rich perovskite domains yields an area specific resistance of only ~0.013 Ω cm2 at 650oC, which is far superior to that anticipated from the component phases in isolation. The cooperative interaction found in multi-phase catalyst prepared via simple one-pot synthesis is not only attractive to the SOFCs but also for other kinds of energy conversion and storage devices, such as protonic ceramic electrochemical cells, electrolysers, and membrane chemical reformers.