亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Age Bias in Emotion Detection: An Analysis of Facial Emotion Recognition Performance on Young, Middle-Aged, and Older Adults

幸福 厌恶 悲伤 愤怒 心理学 情绪识别 面子(社会学概念) 临床心理学 社会心理学 社会学 社会科学 神经科学
作者
Eugenia Kim,De’Aira Bryant,Deepak Srikanth,Ayanna Howard
标识
DOI:10.1145/3461702.3462609
摘要

The growing potential for facial emotion recognition (FER) technology has encouraged expedited development at the cost of rigorous validation. Many of its use-cases may also impact the diverse global community as FER becomes embedded into domains ranging from education to security to healthcare. Yet, prior work has highlighted that FER can exhibit both gender and racial biases like other facial analysis techniques. As a result, bias-mitigation research efforts have mainly focused on tackling gender and racial disparities, while other demographic related biases, such as age, have seen less progress. This work seeks to examine the performance of state of the art commercial FER technology on expressive images of men and women from three distinct age groups. We utilize four different commercial FER systems in a black box methodology to evaluate how six emotions - anger, disgust, fear, happiness, neutrality, and sadness - are correctly detected by age group. We further investigate how algorithmic changes over the last year have affected system performance. Our results found that all four commercial FER systems most accurately perceived emotion in images of young adults and least accurately in images of older adults. This trend was observed for analyses conducted in 2019 and 2020. However, little to no gender disparities were observed in either year. While older adults may not have been the initial target consumer of FER technology, statistics show the demographic is quickly growing more keen to applications that use such systems. Our results demonstrate the importance of considering various demographic subgroups during FER system validation and the need for inclusive, intersectional algorithmic developmental practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁成危完成签到,获得积分10
2秒前
15秒前
59秒前
哈密瓜发布了新的文献求助50
1分钟前
田様应助哈密瓜采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
2分钟前
小小完成签到 ,获得积分10
2分钟前
科研通AI2S应助体贴花卷采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助xfcy采纳,获得10
4分钟前
jarenthar完成签到 ,获得积分10
4分钟前
留下记忆完成签到 ,获得积分10
5分钟前
5分钟前
斯文的难破完成签到 ,获得积分10
5分钟前
Rainbow完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
传奇3应助体贴花卷采纳,获得30
6分钟前
嘒彼小星完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
Min完成签到 ,获得积分10
7分钟前
8分钟前
坦率迎海zzh完成签到,获得积分10
8分钟前
8分钟前
9分钟前
西山雨完成签到,获得积分10
9分钟前
李爱国应助西山雨采纳,获得10
9分钟前
9分钟前
魏白晴完成签到,获得积分10
9分钟前
DChen完成签到 ,获得积分10
9分钟前
TiY完成签到 ,获得积分10
10分钟前
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531229
捐赠科研通 2622376
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881