Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI

支持向量机 人工智能 交叉验证 Lasso(编程语言) 功能磁共振成像 计算机科学 特征选择 体素 模式识别(心理学) 相关性 机器学习 接收机工作特性 秩相关 数学 心理学 神经科学 万维网 几何学
作者
Huize Pang,Ziyang Yu,Hongmei Yu,Jibin Cao,YingMei Li,Miaoran Guo,Chenghao Cao,Guoguang Fan
出处
期刊:Parkinsonism & Related Disorders [Elsevier]
卷期号:90: 65-72 被引量:30
标识
DOI:10.1016/j.parkreldis.2021.08.003
摘要

This study aimed to develop an automatic classifier to distinguish different motor subtypes of Parkinson's disease (PD) based on multilevel indices of resting-state functional magnetic resonance imaging (rs-fMRI).Ninety-six PD patients, which included thirty-nine postural instability and gait difficulty (PIGD) subtype and fifty-seven tremor-dominant (TD) subtype, were enrolled and allocated to training and validation datasets with a ratio of 7:3. A total of five types of index, consisting of mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), degree of centrality (DC), voxel-mirrored homotopic connectivity (VMHC), and functional connectivity (FC), were extracted. The features were then selected using a two-sample t-test, the least absolute shrinkage and selection operator (LASSO), and Spearman's rank correlation coefficient. Finally, support vector machine (SVM) models based on the separate index and multilevel indices were built, and the performance of models was assessed via the area under the receiver operating characteristic curve (AUC). Feature importance was evaluated using Shapley additive explanation (SHAP) values.The optimal SVM model was obtained based on multilevel rs-fMRI indices, with an AUC of 0.934 in the training dataset and an AUC of 0.917 in the validation dataset. The AUCs of the models based on the separate index were ranged from 0.783 to 0.858 for the training dataset and from 0.713 to 0.792 for the validation dataset. SHAP analysis revealed that functional activity and connectivity in frontal lobe and cerebellum were important features for differentiating PD subtypes.Our findings demonstrated multilevel rs-fMRI indices could provide more comprehensive information on brain functionalteration. Furthermore, the machine learning method based on multilevel rs-fMRI indices might be served as an alternative approach for automatically classifying clinical subtypes in PD at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JXY发布了新的文献求助10
3秒前
今后应助淡然觅荷采纳,获得10
3秒前
7秒前
梦幻完成签到,获得积分10
7秒前
10秒前
10秒前
上官若男应助飞快的万声采纳,获得10
11秒前
景泰蓝完成签到,获得积分10
12秒前
15秒前
学习发布了新的文献求助10
15秒前
景泰蓝发布了新的文献求助30
15秒前
田様应助坚强的笑天采纳,获得30
15秒前
18秒前
Hello应助无足鸟采纳,获得10
23秒前
27秒前
28秒前
吉祥财子完成签到 ,获得积分10
28秒前
嗯哼应助姜苏婷采纳,获得10
30秒前
32秒前
35秒前
秋天吃掉了夏天完成签到,获得积分10
35秒前
37秒前
pigff完成签到,获得积分10
38秒前
光亮妙之完成签到,获得积分10
39秒前
甜甜秋荷发布了新的文献求助30
40秒前
酷酷的杨发布了新的文献求助10
41秒前
41秒前
可爱的函函应助JXY采纳,获得10
42秒前
无语的胡萝卜完成签到 ,获得积分10
44秒前
小田睡不醒完成签到,获得积分10
45秒前
xinbowey发布了新的文献求助10
45秒前
酷酷的杨完成签到,获得积分20
45秒前
Cc关闭了Cc文献求助
46秒前
小医小鱼完成签到,获得积分10
47秒前
Philthee完成签到,获得积分10
49秒前
Orange应助玩命的兔子采纳,获得10
49秒前
saber_lancer发布了新的文献求助30
52秒前
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343326
求助须知:如何正确求助?哪些是违规求助? 2970407
关于积分的说明 8643896
捐赠科研通 2650477
什么是DOI,文献DOI怎么找? 1451290
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661492