Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI

支持向量机 人工智能 交叉验证 Lasso(编程语言) 功能磁共振成像 计算机科学 特征选择 体素 模式识别(心理学) 相关性 机器学习 接收机工作特性 秩相关 数学 心理学 神经科学 万维网 几何学
作者
Huize Pang,Ziyang Yu,Hongmei Yu,Jibin Cao,YingMei Li,Miaoran Guo,Chenghao Cao,Guoguang Fan
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:90: 65-72 被引量:37
标识
DOI:10.1016/j.parkreldis.2021.08.003
摘要

This study aimed to develop an automatic classifier to distinguish different motor subtypes of Parkinson's disease (PD) based on multilevel indices of resting-state functional magnetic resonance imaging (rs-fMRI).Ninety-six PD patients, which included thirty-nine postural instability and gait difficulty (PIGD) subtype and fifty-seven tremor-dominant (TD) subtype, were enrolled and allocated to training and validation datasets with a ratio of 7:3. A total of five types of index, consisting of mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), degree of centrality (DC), voxel-mirrored homotopic connectivity (VMHC), and functional connectivity (FC), were extracted. The features were then selected using a two-sample t-test, the least absolute shrinkage and selection operator (LASSO), and Spearman's rank correlation coefficient. Finally, support vector machine (SVM) models based on the separate index and multilevel indices were built, and the performance of models was assessed via the area under the receiver operating characteristic curve (AUC). Feature importance was evaluated using Shapley additive explanation (SHAP) values.The optimal SVM model was obtained based on multilevel rs-fMRI indices, with an AUC of 0.934 in the training dataset and an AUC of 0.917 in the validation dataset. The AUCs of the models based on the separate index were ranged from 0.783 to 0.858 for the training dataset and from 0.713 to 0.792 for the validation dataset. SHAP analysis revealed that functional activity and connectivity in frontal lobe and cerebellum were important features for differentiating PD subtypes.Our findings demonstrated multilevel rs-fMRI indices could provide more comprehensive information on brain functionalteration. Furthermore, the machine learning method based on multilevel rs-fMRI indices might be served as an alternative approach for automatically classifying clinical subtypes in PD at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研鸟发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
3秒前
岁月静好发布了新的文献求助10
4秒前
fanfan完成签到,获得积分10
4秒前
yiyimx完成签到,获得积分10
5秒前
ll发布了新的文献求助10
5秒前
吃零食吃不下饭完成签到,获得积分10
7秒前
fanfan发布了新的文献求助10
7秒前
景平发布了新的文献求助10
7秒前
7秒前
mmj完成签到 ,获得积分10
8秒前
yuan1226完成签到 ,获得积分10
10秒前
无花果应助乖猫要努力采纳,获得10
10秒前
11秒前
12秒前
12秒前
听天由命W完成签到,获得积分10
12秒前
乐观小之应助目眩采纳,获得20
14秒前
ele_yuki完成签到,获得积分10
14秒前
淡然的铭完成签到,获得积分10
14秒前
斯文败类应助hx采纳,获得10
15秒前
小小富应助yiyimx采纳,获得10
15秒前
16秒前
Yaya发布了新的文献求助10
16秒前
李华完成签到,获得积分10
16秒前
hhhh发布了新的文献求助10
16秒前
大橙子应助深情的幼南采纳,获得10
17秒前
水濑心源发布了新的文献求助10
17秒前
gdwang1973完成签到,获得积分10
18秒前
18秒前
悦耳娩完成签到,获得积分10
20秒前
英俊的铭应助hhhh采纳,获得10
21秒前
22秒前
Castiron完成签到,获得积分10
23秒前
小董不懂发布了新的文献求助30
23秒前
Danielle完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388