Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI

支持向量机 人工智能 交叉验证 Lasso(编程语言) 功能磁共振成像 计算机科学 特征选择 体素 模式识别(心理学) 相关性 机器学习 接收机工作特性 秩相关 数学 心理学 神经科学 万维网 几何学
作者
Huize Pang,Ziyang Yu,Hongmei Yu,Jibin Cao,YingMei Li,Miaoran Guo,Chenghao Cao,Guoguang Fan
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:90: 65-72 被引量:37
标识
DOI:10.1016/j.parkreldis.2021.08.003
摘要

This study aimed to develop an automatic classifier to distinguish different motor subtypes of Parkinson's disease (PD) based on multilevel indices of resting-state functional magnetic resonance imaging (rs-fMRI).Ninety-six PD patients, which included thirty-nine postural instability and gait difficulty (PIGD) subtype and fifty-seven tremor-dominant (TD) subtype, were enrolled and allocated to training and validation datasets with a ratio of 7:3. A total of five types of index, consisting of mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), degree of centrality (DC), voxel-mirrored homotopic connectivity (VMHC), and functional connectivity (FC), were extracted. The features were then selected using a two-sample t-test, the least absolute shrinkage and selection operator (LASSO), and Spearman's rank correlation coefficient. Finally, support vector machine (SVM) models based on the separate index and multilevel indices were built, and the performance of models was assessed via the area under the receiver operating characteristic curve (AUC). Feature importance was evaluated using Shapley additive explanation (SHAP) values.The optimal SVM model was obtained based on multilevel rs-fMRI indices, with an AUC of 0.934 in the training dataset and an AUC of 0.917 in the validation dataset. The AUCs of the models based on the separate index were ranged from 0.783 to 0.858 for the training dataset and from 0.713 to 0.792 for the validation dataset. SHAP analysis revealed that functional activity and connectivity in frontal lobe and cerebellum were important features for differentiating PD subtypes.Our findings demonstrated multilevel rs-fMRI indices could provide more comprehensive information on brain functionalteration. Furthermore, the machine learning method based on multilevel rs-fMRI indices might be served as an alternative approach for automatically classifying clinical subtypes in PD at the individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助三斤采纳,获得10
1秒前
zcl完成签到,获得积分0
1秒前
小巧十三发布了新的文献求助10
1秒前
2秒前
sns八丘发布了新的文献求助10
3秒前
菜虚鲲完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
wink发布了新的文献求助40
6秒前
6秒前
7秒前
Lucky发布了新的文献求助10
9秒前
shuaige完成签到,获得积分10
9秒前
枕星发布了新的文献求助10
9秒前
11秒前
11秒前
酷波er应助活泼小蜜蜂采纳,获得10
12秒前
13秒前
CipherSage应助okkksyyy采纳,获得10
15秒前
浮游应助郭睿采纳,获得10
16秒前
游大侠完成签到,获得积分10
18秒前
小巧十三完成签到,获得积分10
20秒前
20秒前
聪慧跳跳糖完成签到,获得积分10
20秒前
ez2完成签到,获得积分10
21秒前
语_wyy完成签到,获得积分10
21秒前
深时完成签到,获得积分10
23秒前
DDD完成签到,获得积分10
23秒前
英姑应助缓慢的灵枫采纳,获得10
24秒前
小艺发布了新的文献求助10
25秒前
kkk完成签到,获得积分10
26秒前
大个应助WangJie采纳,获得10
27秒前
刻苦牛马完成签到 ,获得积分10
28秒前
顾矜应助科研通管家采纳,获得10
29秒前
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
30秒前
共享精神应助科研通管家采纳,获得30
30秒前
xiaoliu完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968252
求助须知:如何正确求助?哪些是违规求助? 4225660
关于积分的说明 13160099
捐赠科研通 4012627
什么是DOI,文献DOI怎么找? 2195694
邀请新用户注册赠送积分活动 1209056
关于科研通互助平台的介绍 1123122