重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A deep learning based ensemble learning method for epileptic seizure prediction

人工智能 计算机科学 癫痫 卷积神经网络 深度学习 癫痫发作 集成学习 机器学习 支持向量机 脑电图 模式识别(心理学) 分类器(UML) 特征(语言学) 心理学 神经科学 哲学 语言学
作者
Syed Muhammad Usman,Shehzad Khalid,Sadaf Bashir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104710-104710 被引量:133
标识
DOI:10.1016/j.compbiomed.2021.104710
摘要

In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kuuga发布了新的文献求助10
刚刚
Hilda007应助受伤邴采纳,获得10
刚刚
乔采文完成签到 ,获得积分10
1秒前
火锅发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
linshen完成签到,获得积分10
2秒前
CipherSage应助现实的中蓝采纳,获得10
2秒前
2秒前
2秒前
研友_Z60x5L完成签到 ,获得积分10
2秒前
3秒前
Guesss发布了新的文献求助30
3秒前
月亮0927发布了新的文献求助10
4秒前
小李完成签到,获得积分10
5秒前
6秒前
LZH发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
顾矜应助ggjy采纳,获得10
8秒前
栗子发布了新的文献求助10
8秒前
华仔应助赵文丽采纳,获得10
8秒前
9秒前
9秒前
石土土完成签到 ,获得积分10
9秒前
张夏俊完成签到,获得积分10
9秒前
9秒前
文俊伟完成签到,获得积分10
10秒前
crane发布了新的文献求助10
10秒前
10秒前
10秒前
平日很嚣张女士完成签到,获得积分10
11秒前
12秒前
amelia发布了新的文献求助10
13秒前
14秒前
天熙发布了新的文献求助10
14秒前
14秒前
情怀应助苦咖啡采纳,获得10
14秒前
隐形萃发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516