A deep learning based ensemble learning method for epileptic seizure prediction

人工智能 计算机科学 癫痫 卷积神经网络 深度学习 癫痫发作 集成学习 机器学习 支持向量机 脑电图 模式识别(心理学) 分类器(UML) 特征(语言学) 心理学 神经科学 哲学 语言学
作者
Syed Muhammad Usman,Shehzad Khalid,Sadaf Bashir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104710-104710 被引量:133
标识
DOI:10.1016/j.compbiomed.2021.104710
摘要

In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
victor完成签到,获得积分10
1秒前
mf完成签到,获得积分10
1秒前
longer发布了新的文献求助10
2秒前
3秒前
Nomb1发布了新的文献求助10
3秒前
Yy发布了新的文献求助10
3秒前
思源应助我先睡了采纳,获得10
3秒前
852应助机智的啤酒采纳,获得10
4秒前
科研通AI6应助扭捏的扭捏采纳,获得10
4秒前
Katyusha发布了新的文献求助10
4秒前
4秒前
5秒前
dopamine完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
zz关闭了zz文献求助
6秒前
邱化兴完成签到,获得积分10
6秒前
7秒前
善学以致用应助youxun采纳,获得10
7秒前
6665发布了新的文献求助10
8秒前
fan发布了新的文献求助10
8秒前
Mystery完成签到,获得积分10
8秒前
勤奋糖豆完成签到,获得积分10
8秒前
上官若男应助没有答案采纳,获得10
9秒前
深情安青应助刘虹采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
传奇3应助JUZI采纳,获得10
9秒前
苏黎世发布了新的文献求助10
10秒前
leo完成签到,获得积分10
10秒前
10秒前
OvO完成签到,获得积分10
11秒前
暴躁的冬菱完成签到,获得积分10
11秒前
hah发布了新的文献求助10
12秒前
佐伊完成签到 ,获得积分10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
花轻完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744