A deep learning based ensemble learning method for epileptic seizure prediction

人工智能 计算机科学 癫痫 卷积神经网络 深度学习 癫痫发作 集成学习 机器学习 支持向量机 脑电图 模式识别(心理学) 分类器(UML) 特征(语言学) 心理学 神经科学 哲学 语言学
作者
Syed Muhammad Usman,Shehzad Khalid,Sadaf Bashir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104710-104710 被引量:133
标识
DOI:10.1016/j.compbiomed.2021.104710
摘要

In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AN发布了新的文献求助10
刚刚
hailey发布了新的文献求助10
2秒前
3秒前
zhuhe完成签到,获得积分10
3秒前
3秒前
丰知然应助小点点采纳,获得10
4秒前
13发布了新的文献求助10
4秒前
Hu完成签到,获得积分20
5秒前
5秒前
Hayat发布了新的文献求助50
5秒前
烟花应助灵巧的石头采纳,获得10
5秒前
6秒前
大模型应助调皮的巧凡采纳,获得10
6秒前
6秒前
6秒前
别管我了完成签到,获得积分10
6秒前
7秒前
yxy发布了新的文献求助10
7秒前
健康小宋完成签到,获得积分10
7秒前
斯文败类应助CDX采纳,获得10
7秒前
善良的函发布了新的文献求助10
8秒前
打打应助含蓄的傲霜采纳,获得10
9秒前
10秒前
10秒前
11秒前
wanci应助13采纳,获得10
11秒前
silentforsure发布了新的文献求助10
12秒前
llyu完成签到,获得积分10
12秒前
嘟嘟完成签到,获得积分10
12秒前
樱书发布了新的文献求助10
12秒前
12秒前
binz完成签到,获得积分0
13秒前
奋力加载ing完成签到,获得积分20
14秒前
lzxucn发布了新的文献求助10
14秒前
在水一方应助灵巧的石头采纳,获得10
14秒前
3089ggf发布了新的文献求助10
14秒前
14秒前
123完成签到,获得积分20
15秒前
liua发布了新的文献求助10
15秒前
无情访琴发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657