A deep learning based ensemble learning method for epileptic seizure prediction

人工智能 计算机科学 癫痫 卷积神经网络 深度学习 癫痫发作 集成学习 机器学习 支持向量机 脑电图 模式识别(心理学) 分类器(UML) 特征(语言学) 心理学 神经科学 哲学 语言学
作者
Syed Muhammad Usman,Shehzad Khalid,Sadaf Bashir
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104710-104710 被引量:133
标识
DOI:10.1016/j.compbiomed.2021.104710
摘要

In epilepsy, patients suffer from seizures which cannot be controlled with medicines or surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is extremely important so that they can be controlled with medication before they actually occur. Researchers have proposed multiple machine/deep learning based methods to predict epileptic seizures; however, accurate prediction of epileptic seizures with low false positive rate is still a challenge. In this research, we propose a deep learning based ensemble learning method to predict epileptic seizures. In the proposed method, EEG signals are preprocessed using empirical mode decomposition followed by bandpass filtering for noise removal. The class imbalance problem has been mitigated with synthetic preictal segments generated using generative adversarial networks. A three-layer customized convolutional neural network has been proposed to extract automated features from preprocessed EEG signals and combined them with handcrafted features to get a comprehensive feature set. The feature set is then used to train an ensemble classifier that combines the output of SVM, CNN and LSTM using Model agnostic meta learning. An average sensitivity of 96.28% and specificity of 95.65% with an average anticipation time of 33 min on all subjects of CHBMIT has been achieved by the proposed method, whereas, on American epilepsy society-Kaggle seizure prediction dataset, an average sensitivity of 94.2% and specificity of 95.8% has been achieved on all subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲曲发布了新的文献求助10
1秒前
2秒前
123发布了新的文献求助30
2秒前
lixue发布了新的文献求助10
2秒前
3秒前
JamesPei应助任性的老九采纳,获得10
3秒前
zpctx应助第一百零一个采纳,获得20
4秒前
满意夏旋完成签到,获得积分10
4秒前
小杨九分甜完成签到,获得积分10
4秒前
没食子酸完成签到,获得积分10
4秒前
称心芷天完成签到 ,获得积分20
4秒前
5秒前
上官若男应助jh采纳,获得10
5秒前
5秒前
6秒前
6秒前
hyperle完成签到,获得积分10
6秒前
深情安青应助漫漫采纳,获得10
6秒前
大模型应助栀初采纳,获得10
6秒前
hhhm完成签到 ,获得积分10
6秒前
打打应助老实的雁卉采纳,获得30
6秒前
7秒前
赘婿应助彩虹捕手采纳,获得10
7秒前
Big_wayne完成签到,获得积分10
7秒前
7秒前
叮当喵完成签到,获得积分10
8秒前
苏苏完成签到,获得积分10
8秒前
9秒前
Rufina0720发布了新的文献求助10
9秒前
年轻小之发布了新的文献求助10
9秒前
热情十三完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
天天哥哥完成签到 ,获得积分10
10秒前
舒克发布了新的文献求助10
10秒前
笑点低的代容完成签到,获得积分10
10秒前
11秒前
Jasper应助满意夏旋采纳,获得10
11秒前
winwin完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526338
求助须知:如何正确求助?哪些是违规求助? 4616396
关于积分的说明 14553657
捐赠科研通 4554678
什么是DOI,文献DOI怎么找? 2496015
邀请新用户注册赠送积分活动 1476342
关于科研通互助平台的介绍 1447998