Rapid identification of A1 and A2 milk based on the combination of mid-infrared spectroscopy and chemometrics

化学计量学 偏最小二乘回归 线性判别分析 特征选择 数学 交叉验证 人工智能 计算机科学 统计 模式识别(心理学) 食品科学 化学 机器学习
作者
Shijie Xiao,Qiaohua Wang,Chunfang Li,Wenju Liu,Jingjing Zhang,Yikai Fan,Jundong Su,Haitong Wang,Xuelu Luo,Shujun Zhang
出处
期刊:Food Control [Elsevier BV]
卷期号:134: 108659-108659 被引量:8
标识
DOI:10.1016/j.foodcont.2021.108659
摘要

The milk containing only A2 β-casein (called A2 milk) is globally popular because of its unique health benefits. Traditionally, genetic testing (such as gene sequencing) is used to identify the cows with A2 β-casein gene that can only produce A2 milk, which is a time-consuming and costly method. The objective of this study was to directly identify A1 and A2 milk from a large quantity of milk using mid-infrared (MIR) spectroscopy and chemometrics without genotyping cows. Before establishing the predictive model, we firstly genotyped the A1 β-casein and A2 β-casein of cows from blood as reference values. Further, the MIR spectra of the milk collected from these cows were obtained using a dairy product analyzer. The MIR spectroscopy data and the reference values were used as the independent and dependent variables, respectively, to establish a category classification model for A1 and A2 milk. Seven preprocessing methods were combined with two feature extraction algorithms to establish the model. Subsequently, partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) models were developed. The average accuracy of the test set of the two models were 94.9% and 94.4%, respectively, while the PLS-DA model exhibited better effect, and the accuracy of training set and test set reached 96.6% and 96.0%, respectively. We used a set of independent samples for the external validation of the PLS-DA model, and the prediction accuracy was 95.2%. Overall, the proposed prediction models based on MIR spectroscopy can be used for low-cost, rapid, and large-scale classification of A1 and A2 milk, which may be extremely beneficial in milk production industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
湖医小朱发布了新的文献求助10
4秒前
lalala完成签到,获得积分10
4秒前
Ray完成签到 ,获得积分10
4秒前
4秒前
4秒前
天天快乐应助橙子采纳,获得10
5秒前
墨易发布了新的文献求助10
6秒前
打打应助沉静的元容采纳,获得10
7秒前
彭于晏应助柠柚萌不萌采纳,获得10
9秒前
10秒前
522完成签到,获得积分10
11秒前
wade2016发布了新的文献求助30
11秒前
14秒前
肖肖潘达完成签到,获得积分10
14秒前
15秒前
打打应助舒心的芙采纳,获得10
15秒前
17秒前
Ysusb完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
王胤发布了新的文献求助10
20秒前
赘婿应助拼搏的芷文采纳,获得10
21秒前
21秒前
21秒前
22秒前
Jasper应助墨易采纳,获得10
23秒前
湖医小朱发布了新的文献求助10
23秒前
24秒前
会飞的扁担完成签到,获得积分10
24秒前
26秒前
26秒前
善良紫安发布了新的文献求助10
26秒前
彭于晏发布了新的文献求助10
27秒前
Agoni发布了新的文献求助10
27秒前
29秒前
暴躁咩完成签到 ,获得积分10
29秒前
传奇3应助善良紫安采纳,获得10
30秒前
茹果发布了新的文献求助10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 820
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748772
求助须知:如何正确求助?哪些是违规求助? 3291802
关于积分的说明 10074525
捐赠科研通 3007545
什么是DOI,文献DOI怎么找? 1651660
邀请新用户注册赠送积分活动 786660
科研通“疑难数据库(出版商)”最低求助积分说明 751801