Y-Net: Dual-branch Joint Network for Semantic Segmentation

计算机科学 分割 串联(数学) 特征(语言学) 编码器 背景(考古学) 人工智能 模式识别(心理学) 判别式 频道(广播) 数学 古生物学 计算机网络 语言学 哲学 组合数学 生物 操作系统
作者
Yizhen Chen,Haifeng Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (4): 1-22 被引量:8
标识
DOI:10.1145/3460940
摘要

Most existing segmentation networks are built upon a “ U -shaped” encoder–decoder structure, where the multi-level features extracted by the encoder are gradually aggregated by the decoder. Although this structure has been proven to be effective in improving segmentation performance, there are two main drawbacks. On the one hand, the introduction of low-level features brings a significant increase in calculations without an obvious performance gain. On the other hand, general strategies of feature aggregation such as addition and concatenation fuse features without considering the usefulness of each feature vector, which mixes the useful information with massive noises. In this article, we abandon the traditional “ U -shaped” architecture and propose Y-Net, a dual-branch joint network for accurate semantic segmentation. Specifically, it only aggregates the high-level features with low-resolution and utilizes the global context guidance generated by the first branch to refine the second branch. The dual branches are effectively connected through a Semantic Enhancing Module, which can be regarded as the combination of spatial attention and channel attention. We also design a novel Channel-Selective Decoder (CSD) to adaptively integrate features from different receptive fields by assigning specific channelwise weights, where the weights are input-dependent. Our Y-Net is capable of breaking through the limit of singe-branch network and attaining higher performance with less computational cost than “ U -shaped” structure. The proposed CSD can better integrate useful information and suppress interference noises. Comprehensive experiments are carried out on three public datasets to evaluate the effectiveness of our method. Eventually, our Y-Net achieves state-of-the-art performance on PASCAL VOC 2012, PASCAL Person-Part, and ADE20K dataset without pre-training on extra datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的硬币完成签到 ,获得积分10
刚刚
1秒前
赘婿应助有人就有恩怨采纳,获得10
1秒前
聪明大王发布了新的文献求助30
2秒前
卿莞尔完成签到 ,获得积分10
2秒前
郭三三发布了新的文献求助20
2秒前
Cc完成签到,获得积分10
2秒前
zhoujinhua完成签到,获得积分10
3秒前
Orange应助Yippee采纳,获得10
4秒前
4秒前
路过蜻蜓完成签到,获得积分10
4秒前
4秒前
情怀应助Yolo采纳,获得10
4秒前
wu完成签到,获得积分10
4秒前
科研通AI5应助典雅问寒采纳,获得10
5秒前
海阔天空发布了新的文献求助10
5秒前
666发布了新的文献求助10
5秒前
Tree发布了新的文献求助10
5秒前
李怀玉完成签到,获得积分10
5秒前
Owen应助Xx丶采纳,获得10
5秒前
Jerlly完成签到,获得积分10
6秒前
彭于晏应助千风采纳,获得10
6秒前
张努力完成签到,获得积分20
6秒前
董阳完成签到,获得积分10
6秒前
梓树完成签到,获得积分20
6秒前
honey完成签到,获得积分10
6秒前
7秒前
Biophilia完成签到 ,获得积分10
8秒前
天天快乐应助菠菜采纳,获得10
8秒前
quincy关注了科研通微信公众号
9秒前
精明玲完成签到 ,获得积分10
9秒前
XUUGO发布了新的文献求助10
9秒前
10秒前
10秒前
nicoco完成签到,获得积分10
10秒前
10秒前
1GE完成签到,获得积分10
10秒前
xc发布了新的文献求助10
11秒前
小陈完成签到,获得积分10
11秒前
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729613
求助须知:如何正确求助?哪些是违规求助? 3274653
关于积分的说明 9987684
捐赠科研通 2989926
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748217