Ratiometric 3D DNA Machine Combined with Machine Learning Algorithm for Ultrasensitive and High-Precision Screening of Early Urinary Diseases

生物标志物 支持向量机 纳米团簇 计算机科学 检出限 计算生物学 核酸 DNA 纳米技术 算法 化学 机器学习 人工智能 生物信息学 材料科学 生物 色谱法 生物化学
作者
Na Wu,Xinyu Zhang,Jie Ning Xia,Xin Li,Ting Yang,Jianhua Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (12): 19522-19534 被引量:63
标识
DOI:10.1021/acsnano.1c06429
摘要

Urinary extracellular vesicles (uEVs) have received considerable attention as a potential biomarker source for the diagnosis of urinary diseases. Present studies mainly focus on the discovery of biomarkers based on high-throughput proteomics, while limited efforts have been paid to applying the uEVs' biomarkers for the diagnosis of early urinary disease. Herein, we demonstrate a diagnosis protocol to realize ultrasensitive detection of uEVs and accurate classification of early urinary diseases, by combing a ratiometric three-dimensional (3D) DNA machine with machine learning (ML). The ratiometric 3D DNA machine platform is constructed by conjugating a padlock probe (PLP) containing cytosine-rich (C-rich) sequences, anchor strands, and nucleic-acid-stabilized silver nanoclusters (DNAAgNCs) onto the magnetic nanoparticles (MNPs). The competitive binding of uEVs with the aptamer releases the walker strand, thus the ratiometric 3D DNA machine was activated to undergo an accurate amplification reaction and produce a ratiometric fluorescence signal. The present biosensor offers a detection limit of 9.9 × 103 particles mL–1 with a linear range of 104–108 particles mL–1 for uEVs. Two ML algorithms, K-nearest neighbor (KNN) and support vector machine (SVM), were subsequently applied for analyzing the correlation between the sensing signals of uEV multibiomarkers and the clinical state. The disease diagnostic accuracy of optimal biomarker combination reaches 95% and 100% by analyzing with KNN and SVM, and the disease type classification exhibits an accuracy of 94.7% and 89.5%, respectively. Moreover, the protocol results in 100% accurate visual identification of clinical uEV samples from individuals with disease or as healthy control by a t-distributed stochastic neighbor embedding (tSNE) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xm发布了新的文献求助10
1秒前
李李完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助Yghu采纳,获得10
3秒前
丘比特应助第七个星球采纳,获得10
3秒前
科研通AI5应助xiajj采纳,获得10
3秒前
3秒前
852应助777采纳,获得10
4秒前
明德zhuang发布了新的文献求助30
4秒前
小马甲应助刘浩然采纳,获得10
4秒前
Epiphany发布了新的文献求助10
4秒前
传奇3应助从容秋寒采纳,获得10
5秒前
搜集达人应助陈述采纳,获得10
6秒前
7秒前
liu发布了新的文献求助10
7秒前
走四方应助RRROP采纳,获得10
8秒前
9秒前
豆豆发布了新的文献求助10
10秒前
睡前吃太饱了完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
智丹完成签到,获得积分10
13秒前
14秒前
脑洞疼应助liu采纳,获得10
14秒前
16秒前
鲤鱼懿轩发布了新的文献求助10
16秒前
从容秋寒发布了新的文献求助10
18秒前
顾易完成签到,获得积分10
18秒前
19秒前
SYLH应助xm采纳,获得10
19秒前
BioRick发布了新的文献求助10
20秒前
NexusExplorer应助a1313采纳,获得10
20秒前
Epiphany完成签到,获得积分10
21秒前
21秒前
ding应助aibiotech采纳,获得10
23秒前
小四发布了新的文献求助10
23秒前
豆豆完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427