Remote Sensing Scene Classification via Multi-Branch Local Attention Network

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 上下文图像分类 特征提取 特征(语言学) 水准点(测量) 遥感 计算机视觉 图像(数学) 地理 大地测量学 语言学 哲学
作者
Si-Bao Chen,Qingsong Wei,Wenzhong Wang,Jin Tang,Bin Luo,Zuyuan Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 99-109 被引量:87
标识
DOI:10.1109/tip.2021.3127851
摘要

Remote sensing scene classification (RSSC) is a hotspot and play very important role in the field of remote sensing image interpretation in recent years. With the recent development of the convolutional neural networks, a significant breakthrough has been made in the classification of remote sensing scenes. Many objects form complex and diverse scenes through spatial combination and association, which makes it difficult to classify remote sensing image scenes. The problem of insufficient differentiation of feature representations extracted by Convolutional Neural Networks (CNNs) still exists, which is mainly due to the characteristics of similarity for inter-class images and diversity for intra-class images. In this paper, we propose a remote sensing image scene classification method via Multi-Branch Local Attention Network (MBLANet), where Convolutional Local Attention Module (CLAM) is embedded into all down-sampling blocks and residual blocks of ResNet backbone. CLAM contains two submodules, Convolutional Channel Attention Module (CCAM) and Local Spatial Attention Module (LSAM). The two submodules are placed in parallel to obtain both channel and spatial attentions, which helps to emphasize the main target in the complex background and improve the ability of feature representation. Extensive experiments on three benchmark datasets show that our method is better than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhangll完成签到,获得积分10
1秒前
无花果应助长情的初瑶采纳,获得10
1秒前
tong童发布了新的文献求助10
2秒前
fanligang发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
小蘑菇应助chx123采纳,获得10
6秒前
www发布了新的文献求助10
7秒前
李健应助lee采纳,获得10
7秒前
linnan发布了新的文献求助10
8秒前
sherry发布了新的文献求助10
8秒前
hehe23he完成签到,获得积分10
9秒前
9秒前
jor666完成签到 ,获得积分10
11秒前
hehe23he发布了新的文献求助10
12秒前
十一月的阴天完成签到 ,获得积分10
12秒前
fanligang完成签到,获得积分10
13秒前
13秒前
14秒前
俭朴的莹完成签到,获得积分20
16秒前
lee完成签到,获得积分10
17秒前
蝴蝶完成签到 ,获得积分10
17秒前
情怀应助天才小熊猫采纳,获得10
17秒前
hoonci完成签到,获得积分10
18秒前
ethely发布了新的文献求助10
18秒前
人间烟火完成签到,获得积分10
21秒前
chx123发布了新的文献求助10
21秒前
cx330完成签到 ,获得积分10
22秒前
Akim应助青岚采纳,获得10
22秒前
poki发布了新的文献求助30
23秒前
Frank应助MARKTTE采纳,获得1000
23秒前
yillin发布了新的文献求助10
23秒前
一一应助卫东采纳,获得30
24秒前
25秒前
26秒前
Ammon应助ardejiang采纳,获得10
28秒前
28秒前
共产主义接班人完成签到,获得积分10
28秒前
领导范儿应助Nina采纳,获得10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233861
求助须知:如何正确求助?哪些是违规求助? 2880343
关于积分的说明 8214733
捐赠科研通 2547792
什么是DOI,文献DOI怎么找? 1377216
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623213