Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 土壤碳 模式识别(心理学) 土壤科学 环境科学 土壤水分
作者
Liang Zhong,Guo Xi,Zhe Xu,Meng Ding
出处
期刊:Geoderma [Elsevier]
卷期号:402: 115366-115366 被引量:77
标识
DOI:10.1016/j.geoderma.2021.115366
摘要

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical technique to predict soil properties. Although traditional machine learning methods are widely used for modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey (LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, and were superior to a single-task shallow convolutional neural network and traditional machine learning methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, with the root mean squared error of 19.130 g∙kg−1, 0.971 g∙kg−1, 6.614 cmol(+)∙kg−1, 0.326, and 24.526 g∙kg−1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultraspectral data, which could enhance precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助章家炜采纳,获得10
1秒前
赵李艺完成签到 ,获得积分10
1秒前
完美世界应助高大黄蜂采纳,获得10
2秒前
3秒前
3秒前
3秒前
zhangzhen发布了新的文献求助10
4秒前
马桶盖盖子完成签到 ,获得积分10
4秒前
5秒前
学术小白完成签到,获得积分10
5秒前
5秒前
郭豪琪发布了新的文献求助10
6秒前
认真丹亦完成签到 ,获得积分10
7秒前
周冬华完成签到,获得积分10
7秒前
烟花应助阔达的平卉采纳,获得10
7秒前
敦敦完成签到,获得积分20
7秒前
nenoaowu完成签到,获得积分10
7秒前
迟大猫应助Hangerli采纳,获得20
8秒前
自信安荷完成签到,获得积分10
8秒前
9秒前
9秒前
赵OO发布了新的文献求助10
9秒前
daniel发布了新的文献求助10
10秒前
敦敦发布了新的文献求助10
10秒前
Apocalypse_zjz完成签到,获得积分10
11秒前
福尔摩曦发布了新的文献求助30
12秒前
开心发布了新的文献求助10
12秒前
zzzzz完成签到,获得积分10
12秒前
12秒前
赵银志完成签到 ,获得积分10
13秒前
13秒前
郭豪琪完成签到,获得积分10
14秒前
14秒前
麦兜完成签到 ,获得积分10
14秒前
慕青应助wjx采纳,获得10
16秒前
打打应助wjx采纳,获得30
16秒前
JamesPei应助wjx采纳,获得10
16秒前
可爱的函函应助wjx采纳,获得10
16秒前
深情安青应助wjx采纳,获得10
16秒前
在水一方应助wjx采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824