Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 土壤碳 模式识别(心理学) 土壤科学 环境科学 土壤水分
作者
Liang Zhong,Guo Xi,Zhe Xu,Meng Ding
出处
期刊:Geoderma [Elsevier BV]
卷期号:402: 115366-115366 被引量:77
标识
DOI:10.1016/j.geoderma.2021.115366
摘要

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical technique to predict soil properties. Although traditional machine learning methods are widely used for modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey (LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, and were superior to a single-task shallow convolutional neural network and traditional machine learning methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, with the root mean squared error of 19.130 g∙kg−1, 0.971 g∙kg−1, 6.614 cmol(+)∙kg−1, 0.326, and 24.526 g∙kg−1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultraspectral data, which could enhance precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WL发布了新的文献求助20
1秒前
XiHuanChi完成签到,获得积分10
2秒前
cz完成签到,获得积分10
2秒前
Orange应助舒心小海豚采纳,获得10
2秒前
李爱国应助斯文明杰采纳,获得10
2秒前
温婉的曼冬完成签到,获得积分10
2秒前
Eternity2025发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
yu发布了新的文献求助10
5秒前
3636完成签到,获得积分10
5秒前
木木发布了新的文献求助10
6秒前
明亮的没完成签到,获得积分10
7秒前
13456发布了新的文献求助10
8秒前
小二郎应助节步青采纳,获得10
8秒前
Ronnie0925发布了新的文献求助10
9秒前
情怀应助激情的不弱采纳,获得10
9秒前
9秒前
10秒前
一念永恒发布了新的文献求助10
10秒前
10秒前
10秒前
llzuo发布了新的文献求助10
11秒前
11秒前
莫莫完成签到,获得积分10
12秒前
上官若男应助木木采纳,获得10
13秒前
窝恁叠完成签到,获得积分10
14秒前
月落完成签到 ,获得积分10
14秒前
小困困朱发布了新的文献求助10
14秒前
柚仝发布了新的文献求助10
15秒前
15秒前
15秒前
raiychemj完成签到,获得积分10
15秒前
16秒前
16秒前
hrs发布了新的文献求助10
17秒前
深情安青应助寒羽采纳,获得10
17秒前
su完成签到,获得积分20
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652