Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 土壤碳 模式识别(心理学) 土壤科学 环境科学 土壤水分
作者
Zhong Liu,Xiaomin Guo,Zhe Xu,Meng Ding
出处
期刊:Geoderma [Elsevier]
卷期号:402: 115366-115366 被引量:58
标识
DOI:10.1016/j.geoderma.2021.115366
摘要

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical technique to predict soil properties. Although traditional machine learning methods are widely used for modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey (LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, and were superior to a single-task shallow convolutional neural network and traditional machine learning methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, with the root mean squared error of 19.130 g∙kg−1, 0.971 g∙kg−1, 6.614 cmol(+)∙kg−1, 0.326, and 24.526 g∙kg−1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultraspectral data, which could enhance precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mudiboyang发布了新的文献求助10
刚刚
雷雷完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
坚定的琦完成签到,获得积分10
3秒前
3秒前
xiayiyi完成签到 ,获得积分10
4秒前
情怀应助wujiwuhui采纳,获得10
4秒前
4秒前
splaker7完成签到,获得积分10
5秒前
伶俐板栗完成签到,获得积分10
5秒前
韩1完成签到,获得积分10
5秒前
学术乞丐完成签到,获得积分10
6秒前
6秒前
6秒前
chenman9397完成签到 ,获得积分10
6秒前
Starain关注了科研通微信公众号
6秒前
7秒前
修勾完成签到 ,获得积分10
8秒前
8秒前
大雷发布了新的文献求助10
9秒前
有魅力的电脑完成签到,获得积分10
9秒前
orixero应助来轩采纳,获得10
9秒前
idynamics发布了新的文献求助10
9秒前
10秒前
火星上的听云完成签到,获得积分10
10秒前
10秒前
10秒前
落微完成签到,获得积分10
11秒前
王迪迪完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
康康发布了新的文献求助10
12秒前
reform发布了新的文献求助10
12秒前
期待完成签到,获得积分10
13秒前
王迪迪发布了新的文献求助10
13秒前
阳光的梦寒完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567