Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 土壤碳 模式识别(心理学) 土壤科学 环境科学 土壤水分
作者
Liang Zhong,Guo Xi,Zhe Xu,Meng Ding
出处
期刊:Geoderma [Elsevier BV]
卷期号:402: 115366-115366 被引量:77
标识
DOI:10.1016/j.geoderma.2021.115366
摘要

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical technique to predict soil properties. Although traditional machine learning methods are widely used for modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey (LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, and were superior to a single-task shallow convolutional neural network and traditional machine learning methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, with the root mean squared error of 19.130 g∙kg−1, 0.971 g∙kg−1, 6.614 cmol(+)∙kg−1, 0.326, and 24.526 g∙kg−1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultraspectral data, which could enhance precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzx完成签到,获得积分10
1秒前
锦江完成签到,获得积分10
9秒前
yangsi完成签到 ,获得积分10
9秒前
JamesPei应助lyn采纳,获得10
9秒前
聖璕完成签到,获得积分10
13秒前
健康的修洁完成签到 ,获得积分20
18秒前
侃侃完成签到,获得积分10
19秒前
科目三应助潇潇雨歇采纳,获得10
20秒前
英姑应助积极的明天采纳,获得10
24秒前
666应助牧鱼采纳,获得10
25秒前
yyy完成签到,获得积分10
27秒前
cherish完成签到,获得积分10
30秒前
31秒前
儒雅沛蓝完成签到,获得积分10
33秒前
不能说的秘密完成签到,获得积分10
38秒前
勤奋笑卉完成签到 ,获得积分10
38秒前
HOPKINSON完成签到,获得积分10
41秒前
aaaa完成签到,获得积分10
41秒前
lanlan完成签到 ,获得积分10
41秒前
大个应助Jenny采纳,获得10
41秒前
大模型应助潇潇雨歇采纳,获得20
44秒前
sssssssssss完成签到,获得积分10
45秒前
Julia完成签到,获得积分10
46秒前
47秒前
49秒前
Stove完成签到,获得积分10
50秒前
atom完成签到,获得积分10
51秒前
52秒前
qiang发布了新的文献求助10
52秒前
satan9发布了新的文献求助10
54秒前
liuyf完成签到 ,获得积分10
55秒前
Akim应助潇潇雨歇采纳,获得20
59秒前
杜兰特发布了新的文献求助10
59秒前
1分钟前
Xiaoxiao应助yyauthor采纳,获得20
1分钟前
pppsci完成签到,获得积分10
1分钟前
jjj应助qiang采纳,获得20
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
凡迪亚比应助科研通管家采纳,获得30
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351