Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 土壤碳 模式识别(心理学) 土壤科学 环境科学 土壤水分
作者
Liang Zhong,Guo Xi,Zhe Xu,Meng Ding
出处
期刊:Geoderma [Elsevier BV]
卷期号:402: 115366-115366 被引量:77
标识
DOI:10.1016/j.geoderma.2021.115366
摘要

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical technique to predict soil properties. Although traditional machine learning methods are widely used for modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey (LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, and were superior to a single-task shallow convolutional neural network and traditional machine learning methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, with the root mean squared error of 19.130 g∙kg−1, 0.971 g∙kg−1, 6.614 cmol(+)∙kg−1, 0.326, and 24.526 g∙kg−1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultraspectral data, which could enhance precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小艺发布了新的文献求助10
刚刚
青椒肉丝完成签到,获得积分10
刚刚
刚刚
是玥玥啊完成签到 ,获得积分10
刚刚
牛战士发布了新的文献求助10
刚刚
羽翼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
飘逸鞋子完成签到 ,获得积分10
1秒前
XQ转运发布了新的文献求助10
2秒前
2秒前
2秒前
ChaC完成签到,获得积分10
2秒前
小蘑菇应助椰青冰萃采纳,获得10
2秒前
初一完成签到 ,获得积分10
2秒前
3秒前
4秒前
小幸福完成签到 ,获得积分10
4秒前
4秒前
旭的完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
WuzJ1ee发布了新的文献求助10
6秒前
6秒前
瓜瓜发布了新的文献求助10
7秒前
Long发布了新的文献求助10
8秒前
加缪发布了新的文献求助30
8秒前
弱水完成签到,获得积分0
8秒前
dsajkdlas发布了新的文献求助10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4894849
求助须知:如何正确求助?哪些是违规求助? 4177017
关于积分的说明 12966466
捐赠科研通 3940063
什么是DOI,文献DOI怎么找? 2161571
邀请新用户注册赠送积分活动 1179941
关于科研通互助平台的介绍 1085611