多细胞生物
基因工程
纳米技术
人工细胞
生物
合成生物学
聚合物
生命系统
功能性聚合物
基因
计算生物学
化学
细胞
膜
神经科学
细胞生物学
材料科学
生物化学
聚合
生态学
有机化学
作者
Jia Liu,Yoon Seok Kim,Claire E. Richardson,Ariane Tom,Charu Ramakrishnan,Fikri Birey,Toru Katsumata,Shucheng Chen,Cheng Wang,Xiao Wang,Lydia‐Marie Joubert,Yuanwen Jiang,Huiliang Wang,Lief E. Fenno,Jeffrey B.‐H. Tok,Sergiu P. Paşca,Kang Shen,Zhenan Bao,Karl Deisseroth
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-03-19
卷期号:367 (6484): 1372-1376
被引量:161
标识
DOI:10.1126/science.aay4866
摘要
The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type-specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI