Ros‐NET: A deep convolutional neural network for automatic identification of rosacea lesions

酒渣鼻 人工智能 卷积神经网络 计算机科学 深度学习 红斑 模式识别(心理学) 皮肤病科 医学 痤疮
作者
Hamidullah Binol,Alisha N. Plotner,Jennifer Sopkovich,Benjamin H. Kaffenberger,Muhammad Khalid Khan Niazi,Metin N. Gürcan
出处
期刊:Skin Research and Technology [Wiley]
卷期号:26 (3): 413-421 被引量:43
标识
DOI:10.1111/srt.12817
摘要

Abstract Background Rosacea is one of the most common cutaneous disorder characterized primarily by facial flushing, erythema, papules, pustules, telangiectases, and nasal swelling. Diagnosis of rosacea is principally done by a physical examination and a consistent patient history. However, qualitative human assessment is often subjective and suffers from a relatively high intra‐ and inter‐observer variability in evaluating patient outcomes. Materials and Methods To overcome these problems, we propose a quantitative and reproducible computer‐aided diagnosis system, Ros‐NET, which integrates information from different image scales and resolutions in order to identify rosacea lesions. This involves adaption of Inception‐ResNet‐v2 and ResNet‐101 to extract rosacea features from facial images. Additionally, we propose to refine the detection results by means of facial‐landmarks–based zones (ie, anthropometric landmarks) as regions of interest (ROI), which focus on typical areas of rosacea occurrence on a face. Results Using a leave‐one‐patient‐out cross‐validation scheme, the weighted average Dice coefficients, in percentages, across all patients (N = 41) with 256 × 256 image patches are 89.8 ± 2.6% and 87.8 ± 2.4% with Inception‐ResNet‐v2 and ResNet‐101, respectively. Conclusion The findings from this study support that pre‐trained networks trained via transfer learning can be beneficial in identifying rosacea lesions. Our future work will involve expanding the work to a larger database of cases with varying degrees of disease characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的战斗机完成签到,获得积分10
2秒前
小学生发布了新的文献求助10
3秒前
F_ken完成签到 ,获得积分10
3秒前
GGGirafe完成签到,获得积分10
3秒前
小马甲应助魔幻的蜻蜓采纳,获得50
3秒前
烟花应助派大星采纳,获得10
4秒前
4秒前
4秒前
缓慢的饼干完成签到,获得积分10
4秒前
香蕉觅云应助晚秋采纳,获得10
4秒前
深情安青应助土行孙采纳,获得10
6秒前
Rgly发布了新的文献求助20
6秒前
7秒前
JamesPei应助背后的小白菜采纳,获得10
8秒前
8秒前
大模型应助把书读烂采纳,获得10
8秒前
斯文败类应助兔兔酱采纳,获得10
8秒前
sonokoH发布了新的文献求助20
9秒前
约定看星星啊完成签到,获得积分10
9秒前
LiangYongrui发布了新的文献求助10
11秒前
Cc发布了新的文献求助10
12秒前
1234完成签到,获得积分10
14秒前
15秒前
zZ发布了新的文献求助10
15秒前
12345发布了新的文献求助10
18秒前
18秒前
19秒前
赘婿应助silent采纳,获得30
19秒前
共享精神应助院落笙歌采纳,获得10
19秒前
燕返完成签到,获得积分10
20秒前
sherry221完成签到,获得积分10
20秒前
23秒前
25秒前
胖头鱼公主完成签到,获得积分10
26秒前
好想走到伯纳乌完成签到,获得积分10
28秒前
昊昊发布了新的文献求助10
29秒前
30秒前
院落笙歌发布了新的文献求助10
31秒前
细腻问柳完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112