Ros‐NET: A deep convolutional neural network for automatic identification of rosacea lesions

酒渣鼻 人工智能 卷积神经网络 计算机科学 深度学习 红斑 模式识别(心理学) 皮肤病科 医学 痤疮
作者
Hamidullah Binol,Alisha N. Plotner,Jennifer Sopkovich,Benjamin H. Kaffenberger,Muhammad Khalid Khan Niazi,Metin N. Gürcan
出处
期刊:Skin Research and Technology [Wiley]
卷期号:26 (3): 413-421 被引量:43
标识
DOI:10.1111/srt.12817
摘要

Abstract Background Rosacea is one of the most common cutaneous disorder characterized primarily by facial flushing, erythema, papules, pustules, telangiectases, and nasal swelling. Diagnosis of rosacea is principally done by a physical examination and a consistent patient history. However, qualitative human assessment is often subjective and suffers from a relatively high intra‐ and inter‐observer variability in evaluating patient outcomes. Materials and Methods To overcome these problems, we propose a quantitative and reproducible computer‐aided diagnosis system, Ros‐NET, which integrates information from different image scales and resolutions in order to identify rosacea lesions. This involves adaption of Inception‐ResNet‐v2 and ResNet‐101 to extract rosacea features from facial images. Additionally, we propose to refine the detection results by means of facial‐landmarks–based zones (ie, anthropometric landmarks) as regions of interest (ROI), which focus on typical areas of rosacea occurrence on a face. Results Using a leave‐one‐patient‐out cross‐validation scheme, the weighted average Dice coefficients, in percentages, across all patients (N = 41) with 256 × 256 image patches are 89.8 ± 2.6% and 87.8 ± 2.4% with Inception‐ResNet‐v2 and ResNet‐101, respectively. Conclusion The findings from this study support that pre‐trained networks trained via transfer learning can be beneficial in identifying rosacea lesions. Our future work will involve expanding the work to a larger database of cases with varying degrees of disease characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FJ完成签到,获得积分10
刚刚
兴奋芷完成签到,获得积分10
刚刚
刚刚
vsbsjj完成签到,获得积分10
1秒前
1秒前
2秒前
动次打次发布了新的文献求助30
2秒前
Tylose完成签到,获得积分10
2秒前
vogo7发布了新的文献求助10
2秒前
菲菲公主完成签到 ,获得积分10
2秒前
caramel发布了新的文献求助10
2秒前
科研通AI6应助悬铃木采纳,获得10
3秒前
烟花应助yutingemail采纳,获得10
3秒前
淡淡的凡完成签到 ,获得积分10
4秒前
brd发布了新的文献求助10
5秒前
Jasper应助邓代容采纳,获得10
5秒前
比格大王发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
夜包子123发布了新的文献求助10
5秒前
zzmm发布了新的文献求助10
5秒前
5秒前
南一发布了新的文献求助10
6秒前
筱灬发布了新的文献求助10
6秒前
111111发布了新的文献求助10
6秒前
key完成签到,获得积分10
7秒前
8秒前
欣喜思萱完成签到,获得积分10
8秒前
完美世界应助阿温采纳,获得10
8秒前
小p给小p的求助进行了留言
9秒前
乐开欣完成签到,获得积分10
9秒前
小mol仙完成签到,获得积分10
9秒前
九号球完成签到,获得积分10
9秒前
善学以致用应助hmx采纳,获得10
10秒前
柠檬小麦青汁完成签到,获得积分10
10秒前
11秒前
Min完成签到,获得积分10
11秒前
xingyuwuhen007完成签到,获得积分10
12秒前
稳重依云完成签到 ,获得积分10
12秒前
所所应助ZZRR采纳,获得10
13秒前
快乐非笑完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585284
求助须知:如何正确求助?哪些是违规求助? 4669106
关于积分的说明 14774781
捐赠科研通 4617521
什么是DOI,文献DOI怎么找? 2530479
邀请新用户注册赠送积分活动 1499197
关于科研通互助平台的介绍 1467660