Ros‐NET: A deep convolutional neural network for automatic identification of rosacea lesions

酒渣鼻 人工智能 卷积神经网络 计算机科学 深度学习 红斑 模式识别(心理学) 皮肤病科 医学 痤疮
作者
Hamidullah Binol,Alisha N. Plotner,Jennifer Sopkovich,Benjamin H. Kaffenberger,Muhammad Khalid Khan Niazi,Metin N. Gürcan
出处
期刊:Skin Research and Technology [Wiley]
卷期号:26 (3): 413-421 被引量:43
标识
DOI:10.1111/srt.12817
摘要

Abstract Background Rosacea is one of the most common cutaneous disorder characterized primarily by facial flushing, erythema, papules, pustules, telangiectases, and nasal swelling. Diagnosis of rosacea is principally done by a physical examination and a consistent patient history. However, qualitative human assessment is often subjective and suffers from a relatively high intra‐ and inter‐observer variability in evaluating patient outcomes. Materials and Methods To overcome these problems, we propose a quantitative and reproducible computer‐aided diagnosis system, Ros‐NET, which integrates information from different image scales and resolutions in order to identify rosacea lesions. This involves adaption of Inception‐ResNet‐v2 and ResNet‐101 to extract rosacea features from facial images. Additionally, we propose to refine the detection results by means of facial‐landmarks–based zones (ie, anthropometric landmarks) as regions of interest (ROI), which focus on typical areas of rosacea occurrence on a face. Results Using a leave‐one‐patient‐out cross‐validation scheme, the weighted average Dice coefficients, in percentages, across all patients (N = 41) with 256 × 256 image patches are 89.8 ± 2.6% and 87.8 ± 2.4% with Inception‐ResNet‐v2 and ResNet‐101, respectively. Conclusion The findings from this study support that pre‐trained networks trained via transfer learning can be beneficial in identifying rosacea lesions. Our future work will involve expanding the work to a larger database of cases with varying degrees of disease characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sztao发布了新的文献求助10
刚刚
ysy完成签到,获得积分10
刚刚
大模型应助陈帅采纳,获得10
刚刚
2秒前
yjjin应助MI采纳,获得10
2秒前
T_KYG发布了新的文献求助10
3秒前
123456qqqq发布了新的文献求助10
3秒前
自然蘑菇完成签到,获得积分20
3秒前
4秒前
Lillian完成签到,获得积分10
4秒前
257发布了新的文献求助10
4秒前
Viki发布了新的文献求助10
4秒前
4秒前
5秒前
麦候完成签到,获得积分10
5秒前
雨眠发布了新的文献求助10
7秒前
7秒前
7秒前
Kraghc发布了新的文献求助10
8秒前
8秒前
Criminology34应助干净寻冬采纳,获得10
9秒前
科研小狗发布了新的文献求助10
10秒前
smartegg完成签到,获得积分10
10秒前
汉堡包应助爱橙色的阿七采纳,获得10
10秒前
复杂千亦发布了新的文献求助10
11秒前
12秒前
潘尼完成签到,获得积分10
12秒前
T_KYG完成签到,获得积分10
12秒前
12秒前
13秒前
爱撒娇的妙竹完成签到,获得积分10
14秒前
七七完成签到 ,获得积分10
14秒前
14秒前
15秒前
李健的小迷弟应助雨眠采纳,获得10
15秒前
Kraghc完成签到,获得积分10
16秒前
科目三应助123456qqqq采纳,获得10
16秒前
Akim应助方方采纳,获得10
16秒前
17秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314