Asynchronous Episodic Deep Deterministic Policy Gradient: Toward Continuous Control in Computationally Complex Environments

强化学习 异步通信 计算机科学 效率低下 任务(项目管理) 理论(学习稳定性) 人工智能 机器学习 工程类 计算机网络 系统工程 经济 微观经济学
作者
Zhizheng Zhang,Jiale Chen,Zhibo Chen,Weiping Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (2): 604-613 被引量:53
标识
DOI:10.1109/tcyb.2019.2939174
摘要

Deep deterministic policy gradient (DDPG) has been proved to be a successful reinforcement learning (RL) algorithm for continuous control tasks. However, DDPG still suffers from data insufficiency and training inefficiency, especially, in computationally complex environments. In this article, we propose asynchronous episodic DDPG (AE-DDPG), as an expansion of DDPG, which can achieve more effective learning with less training time required. First, we design a modified scheme for data collection in an asynchronous fashion. Generally, for asynchronous RL algorithms, sample efficiency or/and training stability diminish as the degree of parallelism increases. We consider this problem from the perspectives of both data generation and data utilization. In detail, we redesign experience replay by introducing the idea of episodic control so that the agent can latch on good trajectories rapidly. In addition, we also inject a new type of noise in action space to enrich the exploration behaviors. Experiments demonstrate that our AE-DDPG achieves higher rewards and requires less time consumption than most popular RL algorithms in learning to run task which has a computationally complex environment. Not limited to the control tasks in the computationally complex environments, AE-DDPG also achieves higher rewards and two-fold to four-fold improvement in sample efficiency on average compared with other variants of DDPG in MuJoCo environments. Furthermore, we verify the effectiveness of each proposed technique component through abundant ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RuiLi完成签到,获得积分10
刚刚
煎饼狗子关注了科研通微信公众号
刚刚
xxxxxb完成签到,获得积分10
刚刚
英姑应助糖糖采纳,获得10
刚刚
淡淡小土豆完成签到 ,获得积分10
1秒前
伶俐的高烽完成签到 ,获得积分10
2秒前
candy6663339完成签到,获得积分10
2秒前
2秒前
gao完成签到 ,获得积分0
3秒前
打打应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得20
3秒前
sota完成签到,获得积分10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
灰色与青完成签到,获得积分10
5秒前
bkagyin应助ylw采纳,获得10
5秒前
星辰大海应助kcmat采纳,获得10
6秒前
7秒前
qq完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
上官若男应助无心的土豆采纳,获得10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066