Energy-Saving Deployment Algorithms of UAV Swarm for Sustainable Wireless Coverage

计算机科学 软件部署 无线 群体行为 能源消耗 近似算法 实时计算 算法 分布式计算 工程类 电信 电气工程 操作系统 人工智能
作者
Xiao Zhang,Lingjie Duan
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (9): 10320-10335 被引量:60
标识
DOI:10.1109/tvt.2020.3004855
摘要

Recent years have witnessed increasingly more uses of Unmanned Aerial Vehicle (UAV) swarms for rapidly providing wireless coverage to ground users. Each UAV is constrained in its energy storage and wireless coverage, and it consumes most energy when flying to the top of the target area, leaving limited leftover energy for hovering at its deployed position and keeping wireless coverage. The literature largely overlooks this sustainability issue of deploying UAV swarm deployment, and we aim to maximize the minimum leftover energy storage among all the UAVs after their deployment. Our new energy-saving deployment problem captures that each UAV's wireless coverage is adjustable by its service altitude, and also takes the no-fly-zone (NFZ) constraint into account. Despite of this, we propose an optimal energy-saving deployment algorithm by jointly balancing heterogeneous UAVs' flying distances on the ground and final service altitudes in the sky. We show that a UAV with larger initial energy storage in the UAV swarm should be deployed further away from the UAV station. Moreover, when $n$ homogeneous UAVs are dispatched from different initial locations, we first prove that any two UAVs of the same initial energy storage will not fly across each other, and then design an approximation algorithm of complexity $n \log \frac{1}{\epsilon}$ to arbitrarily approach the optimum with error $\epsilon$. Finally, we consider that UAVs may have different initial energy storages, and we prove this problem is NP-hard. Despite of this, we successfully propose a heuristic algorithm to solve it by balancing the efficiency and computation complexity well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lai完成签到,获得积分10
2秒前
3秒前
123完成签到,获得积分10
3秒前
Ava应助ll采纳,获得10
3秒前
billie完成签到,获得积分10
4秒前
FY完成签到 ,获得积分10
4秒前
靓丽代柔发布了新的文献求助10
4秒前
5秒前
5秒前
JamesPei应助hbq采纳,获得10
6秒前
共享精神应助熊儒恒采纳,获得10
6秒前
鸡冠要掉了完成签到,获得积分10
6秒前
7秒前
Ezio_sunhao发布了新的文献求助10
7秒前
Charley发布了新的文献求助10
7秒前
i7发布了新的文献求助10
7秒前
CodeCraft应助杜梦婷采纳,获得10
8秒前
8秒前
开心的凝云完成签到 ,获得积分10
8秒前
8秒前
8秒前
CC完成签到 ,获得积分10
8秒前
Orange应助靓丽代柔采纳,获得10
8秒前
9秒前
结实乐曲完成签到,获得积分10
9秒前
歪比八卜发布了新的文献求助10
10秒前
10秒前
跳跳糖发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
LYJ完成签到,获得积分10
11秒前
11秒前
nini发布了新的文献求助10
12秒前
呆呆发布了新的文献求助10
12秒前
12秒前
大神装发布了新的文献求助10
12秒前
浮游应助於傲松采纳,获得10
12秒前
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095