Student’s Success Prediction Model Based on Artificial Neural Networks (ANN) and A Combination of Feature Selection Methods

人工神经网络 人工智能 机器学习 计算机科学 特征选择 集合(抽象数据类型) 特征工程 秩(图论) 支持向量机 班级(哲学) 选择(遗传算法) 数据集 深度学习 数学 组合数学 程序设计语言
作者
Alaa Khalaf Hamoud,Aqeel Majeed Humadi
出处
期刊:Xinan Jiaotong Daxue Xuebao 卷期号:54 (3) 被引量:6
标识
DOI:10.35741/issn.0258-2724.54.3.25
摘要

The improvements in educational data mining (EDM) and machine learning motivated the academic staff to implement educational models to predict the performance of students and find the factors that increase their success. EDM faced many approaches for classifying, analyzing and predicting a student’s academic performance. This paper presents a model of prediction based on an artificial neural network (ANN) by implementing feature selection (FS). A questionnaire is built to collect students’ answers using LimeSurvey and google forms. The questionnaire holds a combination of 61 questions that cover many fields such as sports, health, residence, academic activities, social and managerial information. 161 students participated in the survey from two departments (Computer Science Department and Computer Information Systems Department), college of Computer Science and Information Technology, University of Basra. The data set is combined from two sources applications and is pre-processed by removing the uncompleted answers to produce 151 answers used in the model. Apart from the model, the FS approach is implemented to find the top correlated questions that affect the final class (Grade). The aim of FS is to eliminate the unimportant questions and find those which are important, besides improving the accuracy of the model. A combination of Four FS methods (Info Gain, Correlation, SVM and PCA) are tested and the average rank of these algorithms is obtained to find the top 30 questions out of 61 questions of the questionnaire. Artificial Neural Network is implemented to predict the grade (Pass (P) or Failed (F)). The model performance is compared with three previous models to prove its optimality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Antigen发布了新的文献求助10
2秒前
传奇3应助明理的踏歌采纳,获得10
2秒前
3秒前
4秒前
小布丁发布了新的文献求助10
5秒前
巅峰囚冰发布了新的文献求助10
5秒前
小蘑菇应助远山采纳,获得10
5秒前
东方耀发布了新的文献求助10
5秒前
6秒前
追寻定帮完成签到,获得积分20
7秒前
搜集达人应助wx采纳,获得10
7秒前
parpate发布了新的文献求助10
8秒前
9秒前
12秒前
parpate完成签到,获得积分10
14秒前
16秒前
chang发布了新的文献求助10
16秒前
丘比特应助sxy采纳,获得10
17秒前
18秒前
不懈奋进应助专一的书兰采纳,获得50
18秒前
五个字的下午完成签到,获得积分10
18秒前
20秒前
22秒前
22秒前
22秒前
ABS发布了新的文献求助10
23秒前
谦让远望发布了新的文献求助10
24秒前
南山无玫落完成签到 ,获得积分10
25秒前
GM发布了新的文献求助10
26秒前
勤奋板凳完成签到,获得积分10
27秒前
27秒前
Jenny完成签到,获得积分10
27秒前
hjkl完成签到,获得积分10
27秒前
要减肥夜梦完成签到 ,获得积分10
29秒前
酥酥完成签到,获得积分10
29秒前
勤奋板凳发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154309
求助须知:如何正确求助?哪些是违规求助? 2805114
关于积分的说明 7863632
捐赠科研通 2463326
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629506
版权声明 601821