Student’s Success Prediction Model Based on Artificial Neural Networks (ANN) and A Combination of Feature Selection Methods

人工神经网络 人工智能 机器学习 计算机科学 特征选择 集合(抽象数据类型) 特征工程 秩(图论) 支持向量机 班级(哲学) 选择(遗传算法) 数据集 深度学习 数学 组合数学 程序设计语言
作者
Alaa Khalaf Hamoud,Aqeel Majeed Humadi
出处
期刊:Xinan Jiaotong Daxue Xuebao 卷期号:54 (3) 被引量:6
标识
DOI:10.35741/issn.0258-2724.54.3.25
摘要

The improvements in educational data mining (EDM) and machine learning motivated the academic staff to implement educational models to predict the performance of students and find the factors that increase their success. EDM faced many approaches for classifying, analyzing and predicting a student’s academic performance. This paper presents a model of prediction based on an artificial neural network (ANN) by implementing feature selection (FS). A questionnaire is built to collect students’ answers using LimeSurvey and google forms. The questionnaire holds a combination of 61 questions that cover many fields such as sports, health, residence, academic activities, social and managerial information. 161 students participated in the survey from two departments (Computer Science Department and Computer Information Systems Department), college of Computer Science and Information Technology, University of Basra. The data set is combined from two sources applications and is pre-processed by removing the uncompleted answers to produce 151 answers used in the model. Apart from the model, the FS approach is implemented to find the top correlated questions that affect the final class (Grade). The aim of FS is to eliminate the unimportant questions and find those which are important, besides improving the accuracy of the model. A combination of Four FS methods (Info Gain, Correlation, SVM and PCA) are tested and the average rank of these algorithms is obtained to find the top 30 questions out of 61 questions of the questionnaire. Artificial Neural Network is implemented to predict the grade (Pass (P) or Failed (F)). The model performance is compared with three previous models to prove its optimality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Anjianfubai采纳,获得10
刚刚
1秒前
zehua309发布了新的文献求助30
2秒前
ZL完成签到,获得积分10
2秒前
顾矜应助Freekor采纳,获得10
3秒前
cc完成签到,获得积分10
4秒前
CipherSage应助压力小子采纳,获得10
4秒前
4秒前
清风发布了新的文献求助10
4秒前
JIMMMY应助大鱼采纳,获得20
5秒前
拾柒完成签到,获得积分10
5秒前
7秒前
舒适乐安完成签到,获得积分10
9秒前
9秒前
10秒前
共享精神应助iukoi33采纳,获得10
10秒前
11秒前
科研通AI5应助游一采纳,获得10
12秒前
小蘑菇应助zz采纳,获得10
12秒前
13秒前
小蘑菇应助xxxhhh采纳,获得10
13秒前
哈哈完成签到,获得积分10
13秒前
14秒前
legoman发布了新的文献求助10
14秒前
16秒前
16秒前
leiyang49完成签到,获得积分10
16秒前
麦子发布了新的文献求助10
16秒前
17秒前
11发布了新的文献求助10
18秒前
HongY完成签到,获得积分10
18秒前
黄小北发布了新的文献求助10
19秒前
Lucas应助xu采纳,获得10
19秒前
19秒前
three发布了新的文献求助10
19秒前
qnwang完成签到,获得积分10
19秒前
hhhblabla应助爱哭的小女孩采纳,获得10
19秒前
legoman完成签到,获得积分10
20秒前
淡然的寻冬完成签到 ,获得积分10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496