Gradient Response Harvesting for Continuous System Characterization During MR Sequences

梯度分析 校准 计算机科学 图像质量 波形 领域(数学) 形态梯度 图像渐变 物理 数学 人工智能 图像处理 图像(数学) 电信 排序 雷达 二值图像 量子力学 机器学习 彩色图像 纯数学
作者
Bertram J. Wilm,Benjamin E. Dietrich,Jonas Reber,S. Johanna Vannesjo,Klaas P. Pruessmann
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (3): 806-815 被引量:10
标识
DOI:10.1109/tmi.2019.2936107
摘要

MRI gradient systems are required to generate magnetic field gradient waveforms with very high fidelity. This is commonly implemented by gradient system calibration and pre-emphasis. However, a number of mechanisms, particularly thermal changes, cause variation in the gradient response over time, which cannot be addressed by calibration approaches. To overcome this limitation, we present a novel method termed gradient response harvesting, where the gradient response is continuously characterized during the course of a normal MR sequence. Snippets of field measurements are repeatedly acquired during an MR sequence, and from these multiple field measurements and the known nominal MR sequence gradients, the gradient response and gradient/field offsets are calculated. The calculation is implemented in a model-based and a model-free variant. The method is demonstrated for EPI with high gradient duty-cycle, where the continuous gradient characterization is used to obtain k-space trajectory estimates that are employed in the subsequent image reconstruction. During the course of the MR sequence, changes in both the envelope and the phase of the gradient response functions were observed, including shifts of mechanical resonances. The gradient response changes were also reflected in the calculated uninterrupted gradient waveforms and thus in the k-space trajectories. Using the updated encoding information in the image reconstruction removed ghosting artifacts, that otherwise impaired the image quality. We introduced the concept of gradient response harvesting and demonstrated its feasibility. The obtained gradient response functions may be used for quality assurance/preventive maintenance, real-time adaptation of gradient pre-emphasis or to calculate uninterrupted gradient field evolutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lj完成签到 ,获得积分10
1秒前
2秒前
2秒前
打打应助失眠的月光采纳,获得10
3秒前
3秒前
aka2012发布了新的文献求助10
4秒前
清和月发布了新的文献求助10
5秒前
6秒前
keal发布了新的文献求助10
6秒前
心语发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
慕青应助摇粒绒采纳,获得20
7秒前
肥仔龙发布了新的文献求助10
7秒前
谦让觅风发布了新的文献求助10
7秒前
hbpu230701发布了新的文献求助10
7秒前
8秒前
Lucas应助xaaowang采纳,获得30
9秒前
cjjwei完成签到 ,获得积分10
9秒前
赵心心发布了新的文献求助10
12秒前
lijing123发布了新的文献求助10
12秒前
13秒前
不一样的烟火完成签到 ,获得积分10
13秒前
激昂的问玉完成签到,获得积分10
13秒前
源圈圈发布了新的文献求助10
13秒前
14秒前
14秒前
久念完成签到,获得积分10
15秒前
Akim应助谦让觅风采纳,获得10
15秒前
15秒前
许女士完成签到,获得积分10
16秒前
安详的梨愁完成签到,获得积分10
16秒前
pluto应助我有一件隐身衣采纳,获得10
16秒前
鱼遇完成签到,获得积分10
16秒前
Akim应助陈美宏采纳,获得10
18秒前
久念发布了新的文献求助10
18秒前
华仔应助keal采纳,获得10
19秒前
xxzw完成签到 ,获得积分10
20秒前
子鹤完成签到,获得积分10
20秒前
gab发布了新的文献求助10
20秒前
科目三应助oyx53采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749224
求助须知:如何正确求助?哪些是违规求助? 5456884
关于积分的说明 15362980
捐赠科研通 4888661
什么是DOI,文献DOI怎么找? 2628626
邀请新用户注册赠送积分活动 1576952
关于科研通互助平台的介绍 1533670