Microfluidic devices for synthesizing nanomaterials—a review

微流控 纳米技术 软件可移植性 材料科学 纳米颗粒 计算机科学 程序设计语言
作者
Madhusudan B. Kulkarni,Sanket Goel
出处
期刊:Nano express [IOP Publishing]
卷期号:1 (3): 032004-032004 被引量:79
标识
DOI:10.1088/2632-959x/abcca6
摘要

In recent times, there has been rapid progress and achievement in the development of nanoparticle production in a microfluidic environment. Microfluidics technology harnesses the fluid mechanics to generate nanoparticles with a unique size and finely controllable shape that can be used for various applications like drug delivery, biological sciences, healthcare, and food industries. The nanoparticles are generally distinguished from fine particles to coarse particles due to their smaller size and unique material properties like chemical, physical, biological, and optical. However, the conventional methods require bulky instruments, expensive autoclaves, consume more power, high thermal loss, and require more time for the synthesis. Further, it is very challenging to automate, integrate, and miniaturize the conventional device on a single platform for synthesizing micro-and nanoscale particles. There has been considerable advancement in the development of microfluidic devices in the last few years for nanoparticle synthesis. The microfluidic device unveils several features such as portability, transparency in operation, controllability, and stability with a marginal reaction volume. The microfluidic-based nanoparticle synthesis also allows rapid processing and increased efficiency of the technique by using minimum peripherals for its operation. In this review article, we have discussed the microfluidic devices that are used for synthesizing various nanoparticles for different applications. This review summarizes the value-chain to develop microfluidic devices, including designs, fabrication techniques, and other related methodologies, to create nanoparticles in a controlled and selective manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助独特乘云采纳,获得10
刚刚
刚刚
花色苷儿发布了新的文献求助10
1秒前
溪秋白发布了新的文献求助10
1秒前
1秒前
hu发布了新的文献求助10
1秒前
王小头要查文献完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
小吃货发布了新的文献求助100
4秒前
future完成签到 ,获得积分10
4秒前
4秒前
4秒前
CipherSage应助SZY采纳,获得10
4秒前
英姑应助难过的蘑菇采纳,获得10
4秒前
zjn5完成签到,获得积分20
6秒前
夏侯幻梦发布了新的文献求助10
6秒前
百宝完成签到,获得积分10
6秒前
北城南笙完成签到,获得积分10
6秒前
6秒前
隐形曼青应助knwnje采纳,获得10
6秒前
taco发布了新的文献求助30
7秒前
7秒前
7秒前
六六发布了新的文献求助10
8秒前
8秒前
carl发布了新的文献求助10
8秒前
迷人面包完成签到,获得积分0
9秒前
Hz完成签到 ,获得积分10
9秒前
manan发布了新的文献求助10
9秒前
9秒前
木子李发布了新的文献求助10
9秒前
10秒前
10秒前
lucky发布了新的文献求助10
10秒前
欧阳关注了科研通微信公众号
10秒前
王大包子发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589958
求助须知:如何正确求助?哪些是违规求助? 3158302
关于积分的说明 9519438
捐赠科研通 2861246
什么是DOI,文献DOI怎么找? 1572366
邀请新用户注册赠送积分活动 737890
科研通“疑难数据库(出版商)”最低求助积分说明 722563