Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity

剥脱关节 纳米片 光催化 催化作用 电子顺磁共振 煅烧 材料科学 量子点 石墨氮化碳 异质结 化学工程 比表面积 碳纤维 光化学 纳米技术 化学 石墨烯 复合材料 复合数 光电子学 有机化学 工程类 物理 核磁共振
作者
Yingying Jiao,Yike Li,Jianshe Wang,Zhanhang He,Zhongjun Li
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:497: 111223-111223 被引量:9
标识
DOI:10.1016/j.mcat.2020.111223
摘要

Photocatalysis is a surface catalytic process in which photogenerated electrons are transferred to the surface of the catalyst for water reduction. In this paper, we described a novel two-step calcination strategy that not only realizes the integrating of N-doped carbon dots (NCDs) with g-C3N4 nanosheets, but also can the g-C3N4/NCDs heterojunction provide more catalytic active sites and shortens the distance of charges transport to the surface of materials. The first thermal treatment in the air lead to the formation of bulk g-C3N4 while NCDs was loaded in it. The subsequent secondary calcination was conducive to the exfoliation of bulk g-C3N4 into thinner nanosheets with thickness of 1 nm. Meanwhile, more NCDs insetted in the pristine g-C3N4 were exposed to the surface of materials and more catalytic active site were formed, thus promoting the hydrogen evolution. Electron paramagnetic resonance (EPR) tests certified that the g-C3N4 nanosheet/NCDs composites can generate more OH radical compared with bulk g-C3N4 and bulk g-C3N4/NCDs, which further validated that photogenerated electron-hole was effective separated due to more exposure of NCDs and shorter distance of electron transport to the surface. Impressively, results showed that modification of g-C3N4 with NCDs (1.0 wt % loading) exhibited the highest photocatalytic hydrogen production rate (3319.3 μmol g−1 h−1) and an apparent quantum yield of 29.8 % at 420 nm, which was 13 folds of bulk g-C3N4. Our work illuminates a new method for high activity g-C3N4/carbon dots photocatalyst in the field of photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公司账号2发布了新的文献求助10
1秒前
bbbabo完成签到,获得积分10
1秒前
CipherSage应助欧大大采纳,获得10
2秒前
Zhangxinhao发布了新的文献求助10
3秒前
3秒前
bkagyin应助Leeyouyou采纳,获得10
3秒前
青雉完成签到,获得积分10
3秒前
wangxiangqin完成签到,获得积分10
4秒前
小罗萝卜完成签到,获得积分10
4秒前
JamesPei应助阿拉采纳,获得10
4秒前
5秒前
隐形曼青应助carl采纳,获得10
5秒前
wipmzxu发布了新的文献求助10
5秒前
5秒前
5秒前
在水一方应助王荷一采纳,获得10
6秒前
科目三应助lizhaonian采纳,获得10
7秒前
7秒前
小明给小明的求助进行了留言
7秒前
pluto应助Wunier61采纳,获得10
8秒前
279完成签到,获得积分10
8秒前
缥缈襄发布了新的文献求助10
8秒前
pluto应助fcyyc采纳,获得10
8秒前
8秒前
大个应助一一采纳,获得10
8秒前
文静的颖完成签到,获得积分10
8秒前
wangxiangqin发布了新的文献求助10
8秒前
洁净的鹰关注了科研通微信公众号
9秒前
爱学习的椰子完成签到 ,获得积分10
9秒前
邢晓彤完成签到 ,获得积分10
9秒前
研友_8y2G0L发布了新的文献求助20
10秒前
10秒前
直率的之桃完成签到,获得积分10
10秒前
水电站完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
YE完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246