推论
偏爱
班级(哲学)
集合(抽象数据类型)
计算机科学
非参数统计
鉴定(生物学)
单调函数
决策者
估计
计量经济学
人工智能
经济
机器学习
数理经济学
数学
运筹学
统计
数学分析
管理
程序设计语言
生物
植物
作者
Matias D. Cattaneo,Xinwei Ma,Yusufcan Masatlıoĝlu,Elchin Suleymanov
摘要
This paper illustrates how one can deduce preference from observed choices when attention is both limited and random. We introduce a random attention model where we abstain from any particular attention formation and instead consider a large class of nonparametric random attention rules. Our intuitive condition, monotonic attention, captures the idea that each consideration set competes for the decision maker’s attention. We then develop a revealed preference theory and obtain testable implications. We propose econometric methods for identification, estimation, and inference for the revealed preferences. Finally, we provide a general-purpose software implementation of our estimation and inference results and simulation evidence.
科研通智能强力驱动
Strongly Powered by AbleSci AI