Exploring single-cell data with deep multitasking neural networks

计算机科学 人工智能 人类多任务处理 人工神经网络 计算生物学 深层神经网络 神经科学 生物
作者
Matthew Amodio,David van Dijk,Krishnan Srinivasan,William S. Chen,Hussein Mohsen,Kevin R. Moon,Allison M. Campbell,Yujiao Zhao,Xiaomei Wang,Manjunatha M. Venkataswamy,Anita Desai,Vasanthapuram Ravi,Priti Kumar,Ruth R. Montgomery,Guy Wolf,Smita Krishnaswamy
出处
期刊:Nature Methods [Nature Portfolio]
卷期号:16 (11): 1139-1145 被引量:299
标识
DOI:10.1038/s41592-019-0576-7
摘要

It is currently challenging to analyze single-cell data consisting of many cells and samples, and to address variations arising from batch effects and different sample preparations. For this purpose, we present SAUCIE, a deep neural network that combines parallelization and scalability offered by neural networks, with the deep representation of data that can be learned by them to perform many single-cell data analysis tasks. Our regularizations (penalties) render features learned in hidden layers of the neural network interpretable. On large, multi-patient datasets, SAUCIE’s various hidden layers contain denoised and batch-corrected data, a low-dimensional visualization and unsupervised clustering, as well as other information that can be used to explore the data. We analyze a 180-sample dataset consisting of 11 million T cells from dengue patients in India, measured with mass cytometry. SAUCIE can batch correct and identify cluster-based signatures of acute dengue infection and create a patient manifold, stratifying immune response to dengue. SAUCIE, a deep learning platform to analyze single-cell data across samples and platforms, allows information to be obtained from the internal layers of the network, which provides additional mechanistic understanding that can be used to further tune data analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助paperman采纳,获得10
1秒前
王正龙发布了新的文献求助10
2秒前
ywang发布了新的文献求助10
2秒前
所所应助归尘采纳,获得10
3秒前
pk完成签到,获得积分10
3秒前
高挑的鹰完成签到,获得积分20
3秒前
sun1111发布了新的文献求助10
6秒前
杨杨发布了新的文献求助10
6秒前
6秒前
英吉利25发布了新的文献求助10
6秒前
SQQ完成签到,获得积分20
6秒前
浮游应助可靠板栗采纳,获得10
6秒前
7秒前
哭泣的缘郡完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
斯文败类应助金汐采纳,获得10
9秒前
星辰大海应助HmyGDUT采纳,获得10
10秒前
JamesPei应助满天星采纳,获得10
10秒前
爆米花应助陈先生采纳,获得10
10秒前
红皮燕子完成签到,获得积分10
11秒前
阿修罗完成签到,获得积分10
11秒前
11秒前
归尘发布了新的文献求助10
12秒前
WX完成签到,获得积分10
13秒前
13秒前
14秒前
小黑之家发布了新的文献求助10
14秒前
14秒前
完美世界应助哈哈哈采纳,获得10
14秒前
一团软绵绵应助王邦宁采纳,获得10
14秒前
14秒前
番薯圆完成签到,获得积分10
15秒前
16秒前
Lucas应助Swait采纳,获得10
16秒前
无花果应助陈文学采纳,获得10
17秒前
yungu发布了新的文献求助10
18秒前
JamesPei应助jlk采纳,获得30
18秒前
邵丹发布了新的文献求助10
18秒前
十陌发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942107
求助须知:如何正确求助?哪些是违规求助? 4207873
关于积分的说明 13079673
捐赠科研通 3986881
什么是DOI,文献DOI怎么找? 2182779
邀请新用户注册赠送积分活动 1198476
关于科研通互助平台的介绍 1110773