Computational Fluid Dynamics Analysis of the Flow Force Exerted on the Disk of a Direct-Operated Pressure Safety Valve in Energy System

计算流体力学 雷诺平均Navier-Stokes方程 湍流 机械 流量(数学) 湍流动能 雷诺数 模拟 计算机科学 机械工程 工程类 物理
作者
Chaoyong Zong,Fengjie Zheng,Dianjing Chen,William Dempster,Xueguan Song
出处
期刊:Journal of Pressure Vessel Technology-transactions of The Asme [ASM International]
卷期号:142 (1) 被引量:14
标识
DOI:10.1115/1.4045131
摘要

Abstract The flow force acting on a valve disk plays an important role in the overall performance of pressure safety valves (PSVs). To quantify the disk force, computational fluid dynamics (CFD) methods have been widely implemented. In this paper, the capability of CFD models, and the identification of the most suitable turbulence models' geometry modeling and mesh requirements have been assessed to establish the accuracy of CFD models for disk force prediction. For validation purposes, a PSV disk force measuring rig was designed and constructed to obtain the steady-state flow forces exerted on the valve disk at different valve openings. The CFD model assessment is achieved by comparing the simulation results to experimental measurements; this is achieved in two stages. Stage 1 investigates the use of Reynolds averaged Navier–Stokes (RANS)-based turbulence models where two-dimensional (2D) simulations are performed with five turbulence models. The results indicate that a variety of force results are produced by different turbulence models, among which the shear stress transport (SST) k–ω was found to have the best performance. Stage 2 investigates meshing and the use of symmetry and geometry simplifications; 2D, 1/8 three-dimensional (3D) and 1/2 3D mesh models are examined. The results indicate that the 1/8 3D mesh model is the optimal choice, owing to its higher accuracy and reasonable grid scale. The studies performed in this paper extend the knowledge of compressible flow force prediction, and should facilitate the design or optimization of PSVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
goblin发布了新的文献求助10
2秒前
2秒前
3秒前
ZJX发布了新的文献求助10
7秒前
冰美式发布了新的文献求助10
7秒前
GGGirafe发布了新的文献求助10
7秒前
7秒前
8秒前
搜集达人应助ling22采纳,获得30
8秒前
西哥发布了新的文献求助10
9秒前
10秒前
11秒前
无花果应助goblin采纳,获得10
11秒前
Timezzz发布了新的文献求助10
12秒前
12秒前
hsx完成签到,获得积分10
14秒前
15秒前
SYLH应助冰美式采纳,获得10
15秒前
在水一方应助卧室哒帅哥采纳,获得10
16秒前
可爱的函函应助jxl采纳,获得10
16秒前
mmol发布了新的文献求助10
16秒前
Hello应助zzy采纳,获得10
16秒前
16秒前
湖工大保卫处完成签到,获得积分10
16秒前
16秒前
简单山水发布了新的文献求助10
17秒前
17秒前
17秒前
CipherSage应助叙温雨采纳,获得10
18秒前
丘比特应助满意的涵菱采纳,获得10
19秒前
19秒前
田様应助轻语采纳,获得10
20秒前
Tao发布了新的文献求助10
20秒前
riverflowing发布了新的文献求助20
21秒前
ling22发布了新的文献求助30
22秒前
24秒前
烟花应助mmol采纳,获得10
25秒前
李天发布了新的文献求助10
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835